正方形ABCD的边长为3,E.F分别是AB.BC边上的点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:54:11
正方形ABCD的边长为3,E.F分别是AB.BC边上的点
正方形ABCD的边长为4,BE∥AC交DC的延长线于E.

(1)因为BE∥AC,AB∥CD,所以四边形ABEC是平行四边形,所以CE=AB=4,所以△AED的面积为12×4×(4×2)=16;(2)四边形APCD的面积与正方形ABCD的面积相等,因为BE∥A

已知正方形ABCD边长为1 E,F分别为AB和AD的中点 求阴影部分的面积.

连AC必过点G,E、F是中点AG/GC=1/2,S△AEC=(1/4)×(1/3)=1/12过G作GM∥EC,知AM/ME=1/2,ME/ED=2/3,S△EGH=(1/12)×(2/5)=1/30∴

已知ABCD是边长为6的正方形.E、F为DC、BC的中点.求四边形ABGD的面积.

连CG.有向个同底等高的三角形呢.以下直接用字母表示相应图形的面积有DEG=CGE=CGF=GFBADGB=ADCB-ECB-DEG=6*6-3*6/2-(3*6/2)/3=24

正方形ABCD的边长为4,E、F分别为DC、BC的中点求三角形AEF的面积

6再答:正方形减三个小的三角形再问:怎么求再问:嗯再答:4x4-2x2÷2-4x2÷2x2

如图,在正方形ABCD的边长为2,E为线段AB上一点,

1.2.3.都正确1.作ER⊥CD于R,MS⊥BC于S易证Rt△EFR≌Rt△MGS∴EF=MG2.AE=√3EM=2FM=2MG=4∴FG=2√53.当E在A点时,P为正方形中心当E运动到B点时,P

正方形ABCD,边长为4,E是AB边上的一点,AE为3,P是对角线上的移动点,问PE+PB的最小值是多少

因为P在正方形对角线上,所以可以证明三角形DAP和三角形BAP全等所以PB=PD于是PB+PE就转化成PD+PE的最小值两点之间直线最短咯于是就是D、P、B三点在同一直线上时取到最小值就相当于是求直角

在四棱锥p-abcd中,地面abcd是边长为2的正方形,pd垂直平面abcd,且pd=ad,e为pd的中点

证明:1)∵PD⊥面ABCDAD属于面ABCD∴PD⊥AD又ABCD为正方形∴AD⊥CD∵CDPD属于面PCD∴AD⊥面PCD∴AD⊥PC2)连接BD交AC于F,连接EF因ABCD为正方形所以F为BD

如图:E是边长为1的正方形ABCD的对角线BD上一点

把你写的过程整理了一下:S△BCE =S△BEP +S△BCP,分别将它们的面积写成底乘高除以2:BC*EH/2=BE*PR/2+BC*PQ/2,其中BE=BC上式消掉BC、BE,

如图,正方形ABCD的边长为3,E在BC上,且BE=2,P在BD上,则PE+PC的最小值为______.

如图,连接AE,AP,∵点C关于BD的对称点为点A,∴PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为3,BE=2,∴AE=22+32=13,∴PE

如图,正方形ABCD的边长为6m,点E是AB边上的动点四边形EFGH是正方形,则正方形EFGH面积最小值为

对照你的图形阅读下列内容:设AE=x,则BE=(6-X)BF=XS(EFGH)=EF²=X²+(6-X)²=2X²-12X+36这是一个开口向上的抛物线,当X=

如图所示,正方形ABCD和正方形EFGH的边长分别为a和b,点E是正方形ABCD的中心,在正方形EFGH绕着点E旋转的过

不变分析:设旋转后是正方形则边长为1/2a*1/2a=1/4a^2若不为正方形则可以割补成为一个正方形(初四旋转会学,初三全等三角形也可以证明)

如图,已知正方形ABCD的边长为10cm,点E在AB边

(1)1.在△BEP,△CQP中∠B=∠C,BE=CP=6,BP=CQ=4△BEP≌△CQP2.若要△BEP≌△CQP除1之外的情况,则只有BE=CQ=6,BP=CP=5才成立设Q的运动速度为x,则C

如图,正方形ABCD的边长为6,正方形DEFGD的边长为3,点E在AD上,点C,D,E在同一条直线上,求阴影部分面积

图呢?没图不知道怎么算啊再问:再答:阴影部分面积就是两个正方形减去两个三角形。△S=6*6+3*3-1/2*6*6-1/2*9*3=27/2

已知正方形ABCD的边长为2,E为CD的中点,向量AE乘以向量BD等于多少

再答:建系做比较好再问:我看看再问:可以直接乘嘛再答:恩再答:这种问题建系是最快的再问:如果这样可以再问:在平行四边形ABCD中,AD=1,角BAD=60°,E为CD的中点,向量AC乘以向量BE=1,

在长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,侧棱长为3,E、F分别是AB1、CB1的中点,求证

证明:如图,∵E、F分别是AB1、CB1的中点,∴EF∥AC.∵AB1=CB1,O为AC的中点,∴B1O⊥AC.故B1O⊥EF.在Rt△B1BO中,∵BB1=3,BO=1,∴∠BB1O=30°.从而∠

已知正方形ABCD的边长为1,线段EF//平面ABCD,点E,F在平面ABCD内正投影分别是A,B,且EF到平面ABCD

(1)连接BD由题意得∵EF平行于平面ABCD,平面EFBA交平面ABCD=AB,AB在平面EFBA上∴EA平行FB.EA平行于平面FBD∴∠BFD或其补角为EA与FD所成的角FB=√6/3BD=√2

已知PD⊥面ABCD,四边形ABCD是边长为2的正方形,E是PB的中点,Cos=√3/3

第一个问题:以D为原点,DC所在直线为x轴、DA所在直线为y轴、DP所在直线为z轴建立空间直角坐标系,并使点E落在第一卦限内.容易得出A、B、C、D的坐标依次为(0,2,0)、(2,2,0)、(2,0