正方形ABCD边长为4,点P是BC边上任意一点,AP垂直于PM,求AM的最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:08:50
正方形ABCD边长为4,点P是BC边上任意一点,AP垂直于PM,求AM的最小值
如图,正方形ABCD的边长为4cm,点P是BC边上不与点B、C重合的任意一点,连接AP,过点P作PQ⊥AP交DC于点Q,

(1)∵PQ⊥AP,∠CPQ+∠APB=90度.又∵∠BAP+∠APB=90°,∴∠CPQ=∠BAP,∴tan∠CPQ=tan∠BAP,因此,点在BC上运动时始终有BPAB=CQPC,∵AB=BC=4

正方形ABCD,边长为4,E是AB边上的一点,AE为3,P是对角线上的移动点,问PE+PB的最小值是多少

因为P在正方形对角线上,所以可以证明三角形DAP和三角形BAP全等所以PB=PD于是PB+PE就转化成PD+PE的最小值两点之间直线最短咯于是就是D、P、B三点在同一直线上时取到最小值就相当于是求直角

如图,已知正方形ABCD的边长为4,对称中心为点P,

再问:对称中心是什么?再答:

如图 正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF⊥AE于F

第一问见图\x0d第二问过P作PG⊥延长线于G\x0d当以P、F、E为顶点的三角形也与△ABE相似时,\x0d①△ABE∽△PFE\x0d可推出∠3=∠4\x0d所以PA=PE\x0dPE用勾股定理表

p,q分别是边长为1cm的正方形ABCD的边BC和对角线AC上的两个动点,点P从B出发

(1)作PE垂直AC于E.显然,AC=根号2,AQ=2X,BP=X,PC=1-X.角ACB=45度,所以,PE=CE=(根号2)/2PC=(根号2)/2(1-X).所以,y=1/2*AQ*PE=-(根

正方形ABCD的边长为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,

d.12再问:请说明理由再答:再答:再答:再答:再答:再问:那个为什么DE'最短呢再答:纠正一下,be为最短路径的路径长。点p在ac上,就作d关于ac的对称点,又因ac为对角线、abcd为正方形,d的

如图,正方形ABCD的边长为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P

这题是做对称点以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP + 

如图,正方形ABCD的边长为4,△ABE是等边三角形,点E在正方形ABCD中,在对角线AC上存有一点P

不清楚追问,清楚了希采纳再问:看不懂求过程再答:∵ABCD是正方形∴AC垂直平分BD∴当点P在AC上时,都有BP=DP∵当点B,P,E不在同一直线时,BP+PE>BE,当B,P,E在同一直线时,BP+

一道数学题:设P是正方形ABCD内部的一点,P到顶点A,B,C的距离分别为1,2,3,求正方形的边长.

绕点B旋转△APB,使AB与BC重合,p与点Q重合.连接PQ.则易证△PBQ是等腰直角三角形,PQ=2根号2根据勾股定理的逆定理,得∠PQC=90°.∴∠APB=∠BQC=135°过点A作AM⊥BP交

设P是正方形ABCD内部的一点,P到顶点A.B.C的距离分别为1,2,3,求正方形的边长

设正方形ABCD的边长为a设PAB以P为顶点的高为b设PBC以P为顶点的高为c1

已知点P是边长为4的正方形ABCD的AD边上一点,AP=1,BE⊥PC于E,则BE=______.

如下图所示:PD=AD-AP=4-1=3在Rt△PDC中,PD=AD-AP=4-1=3,DC=4,由勾股定理可得:PC2=PD2+DC2,即:PC=PD2+DC2=32+42=5,∵∠BCE+∠CBE

如图,正方形ABCD的边长为4,点P是BC边上的一个动点(点P不与点B、C重合),连接AP,过点P作PQ⊥AP交DC于点

解题思路:(1)∵四边形ABCD是正方形,∴∠B=∠C=90°∵PQ⊥AP,∴∠APB+∠QPC=90°,∠APB+∠BAP=90°∴∠BAP=∠QPC∴△ABP∽△PCQ解题过程:解:(1)∵四边形

边长为4的正方形ABCD中,点o是对角线AC的中点,P是对角线AC上一动点.

 提示:⑴过P作BC的垂线,垂足为G.∵P是AC上的点,∴PG=PF,又 ∠BPG+∠EPG=∠RPG+∠EPF=90°,  将⊿PBG绕P逆时针旋转90°;与

已知正方形ABCD的边长为2,点P为对角线AC上一点,则(.AP

以A为坐标原点,以AB为X轴正方向,以AD为Y轴正方向建立直角坐标系,则A(0,0),B(2,0),C(2,2),D(0,2),∵P点有对角线AC上,设P(x,x),0<x<2所以.AP=(x,x),

已知正方形ABCD的边长是1,E为CD边的中点,P为正方形ABCD边上的一个动点,动点P从A点出发,沿A→B→C→E运动

当动点P在A---B间运动时,如图(1) ∵ABCD是边长为1的正方形 ∴ △APE的高是1 而AP=x ,△APE的面积为y ∴ 

已知正方形ABCD的边长是2,E是CD中点,P为正方形ABCD上的一个动点,动点P从A出发,沿A,B,C,E运动,若P经

根据已知条件先解出AED三边长,用勾股定理.然后再利用相似三角形边长比例相等的关系,分别用不同的边的比值相等.列三个三元一次方程.解出来AEP三种答案,再讨论成立否.求X.不清楚了在问我.按这个先算算

如图,在边长为2的正方形ABCD中,点Q是BC中点,点P为对角线AC上一动点,连接PB、PQ,

BQ=BC/2=1,即BQ为定值.∵点B和D关于AC对称,则PD=PB.∴PB+PQ=PD+PQ,故当点P在线段DQ上时,PD+PQ最小.DQ=√(CQ²+CD²)=√(1+4)=

边长为4的正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点.过点P作PF⊥CD于点F……急求高手解答

证明:(1)连接PD,BE∠BPE=∠BCE=90°,(BCEP四点共圆,可得∠CBE=∠CPE,∠PCE=∠PBE,∠CBP=∠CBE+∠PBE=∠CPE+∠PCE=∠PEF于是有∠CBP=∠CDP

已知点P是边长为8的正方形ABCD所在 平面外的一点,

取Q∈AB使AQ=3QB则QM=6QN=2∠MQN=∠PBC=60º对⊿MQN用余弦定理MN=2√7再问:请问:如何得出QM=6,QN=2?再答:相似三角形对应边成比例。