正项级数cos2 n是收敛的
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 18:03:17
若正项级数un收敛,则un收敛到0,即存在N,当n>N时,un
∑[1/n^2+(-1)^n]与∑(-1)^{n-1}都是发散的,但逐项相加得∑1/n^2收敛再问:但这两个级数并不是正项的啊再答:两个发散的正项级数相加肯定还是发散的,这是因为正项级数发散以为这其部
错的.级数收敛分为两种,条件收敛与绝对收敛.一个收敛的级数,若它的绝对值级数也收敛,则我们称之为绝对收敛的级数,否则,我们称之为条件收敛的级数.所以绝对收敛只是收敛的子集.例:考虑级数(Sigma)n
首先一般项趋于0这种极限,看最大指数项就行了最大指数项必须是分母(3x)^n|3x|>2,即|x|>2/3lim|[2^(n+1)+x^(n+1)]/[1+(3x)^(n+1)]*[1+(3x)^n]
用比较定理呗,构造一个新级数,b_{2n-1}=0,b_{2n}=a_{2n}.于是∑b_n被收敛级数∑a_n所界定,自然也收敛
这个是定理啊,大收敛推出小收敛,基本上不用证明.如果非要证也很简单,写一写定义就可以了.再问:老师问我们为什么--我该怎么说求解~再答:你是什么专业的?用e-N定理说一下就出来了。对任意e>0存在N,
答案a>1由于a>0,故1+a^n>0.加绝对值无所谓①01通项极限为0.用根值判别法,对通项1/(1+a^n)开n次方,结果是1/a,满足收敛条件,收敛半径是a.故答案就是a>1这是我自己的方法,这
我来上个图.再答:再问:原来是用基本不等式,谢谢!再答:不客气
极限是指趋向无穷的情况,这个概念是无限的.而部分和是指其中一部分的和,这个概念是有限的.有界,是一个有限的表达方式有限的概念要用有限的表达方式去表达
再问:这个用的什么方法再答:判断收敛性可以使用等价无穷小再问:不太懂再答:结合我写的步骤看啊再问:好的
因为\cosna/n³\≤\1/n³\因为Σ1/n³收敛所以Σ\cosna/n³\收敛从而原级数绝对收敛.
首先,容易证明2^k>k对任意k≥1成立.因此2^(n²)=(2^n)^n>n^n≥n!.级数通项的绝对值2^(n²)/n!≥1,不能收敛到0.因此级数发散.
不一定,有时候会等于1.
解答图片已经上传,请稍等.
是发散的,可以用级数收敛的必要条件来判断.经济数学团队帮你解答.请及时评价.
为什么你问的问题总那么古怪呢1,那是定理,满足莱布尼茨定理了,你说能不能推出交错级数收敛,你说是不是充分条件?定义定理一般都是充分条件,如果不是的话,那定义定理就是错的2,A是中国人推出A是人B是外国
比如Un=1/n²,则n*Un=1/n→0=l所以你的推理是不对的.
设正项级数∑{n=1,∞}Un加括号后构成正项级数∑{k=1,∞}Vk(Vk为k个括号求和)Un位于第k个括号中,其中k=k(n)∑{n=1,∞}Un的前n项部分和为Sn∑{k=1,∞}Vk的前k项部