e^(xy)=x y
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 18:05:04
e(-xy)d(-xy)=(xdy+ydx)d(exy^2/2)=d(xy)exy^2=2xy+C,C为任意常数,或x恒等于0,或y恒等于0,或x和y都为常数不知道有没有错呢···
方程两边对x求导,得:y+xy'+y'e^y=2y+2xy'y'e^y-xy'=y得y'=y/(e^y-x)因此dy=ydx/(e^y-x)
dy/dx=e^(xy)dy/e^y=e^xdx两边积分得-e^(-y)=e^x+C再问:你这样右边是e^(x+y)啊再答:噢令xy=p两边求导得y+xy'=p'y'=(p'-y)/x=(p'-p/x
对方程取导数y+x(dy/dx)+(dy/dx)=0(dy/dx)(x+1)=-ydy/dx=(-y)/(x+1)
xdy=(y+xy)dxdy/y=((1+x)/x)dxln|y|=ln|x|+x+cy=±e^(ln|x|+x+c)其中c是常数再问:真还不理解我们是选择题:y=cxe^xy=c+x-x^2y=cs
ydx/dy+x=(e^x)(e^y)dx/dy+(e^x)(e^y)dx/dy=[(e^x)(e^y)-x]/[y-(e^x)(e^y)]dx/dy=(xy-x)/(y-xy)dx/dy=x(y-1
该题为隐函数求导.xy+e^(xy)=1则y+xy'+e^(xy)(y+xy')=0解得:y'=-y/x解答完毕.
两端对x求导得y+xy'=e^(xy)*(y+xy')整理即可得dy/dx=y再问:y'=y+e^xy/e^xy-x?再答:是的啊,就是这样啦。
左右除以x^2,y'/x+y(1/x)'=e^(x-1/x).左边就是(y/x)',两边关于x积分就能得到y=x(右边的不定积分+C).不过e^(x-1/x)不定积分没有初等函数表示啊……是不是抄错了
两边求导:e^(xy)*(xy)'-(xy)'=0e^(xy)*(y+xy')-(y+xy')=0ye^(xy)+xe^(xy)*y'=y+xy'x(e^(xy)-1)y'=y(1-e^(xy))y'
两边同时求导..得:y-e^xy(yx')=0x'=y/(ye^xy)所以dy/dx=y/(ye^xy)
siny+e^x=xy^2,两边求微分,cosydy+e^xdx=d(xy^2)cosydy+e^xdx=y^2dx+2xydy整理,得(e^x-y^2)dx=(2xy-cosy)dydy/dx=(e
你好!两边对x求导:e^(xy)*(y+xy')-y^2=y'cosy解得y'=(y^2-ye^(xy))/(xe^(xy)-cosy)
就是方程两边的每一项都对x进行求导,这里要将y看成是复合函数,y=y(x)比如x对x求导,则为1对y求导,则为y'对xy求导,应用求导运算法则,为y+xy'
思路:x+y=e^xy,两边取微分d(x+y)=d(e^xy)dx+dy=e^xyd(xy)dx+dy=e^xy(xdy+ydx)dx+dy=xe^xydy+ye^xydx(xe^xy-1)dy=(1
两边求导得y'·e^y+(y+xy')/(xy)+e^(-x)=0
答:xy=x-e^(xy)e^(xy)=x-xy=x(1-y)两边对x求导:(xy)'e^(xy)=1-y-xy'(y+xy')e^(xy)=1-y-xy'ye^(xy)+xy'e^(xy)+xy'=