e∧ax²的等价无穷小是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:15:01
不让用洛必达法则那么书上等价无穷小的基本公式总可以用吧?那么因为a不为常且不为0,且x趋近于0时,所以(1+x)^a-1=e^[aln(1+x)]-1等价与aln(1+x),这是使用基本公式e^x-1
在x=0处泰勒展开,e^x=1+x+x^2/2!+x^3/3!.再问:这个等价无穷小,是不是可以直接用。不需要证明。再答:用的时候看情况,如果x为无穷小量,x^2以后的所有项为高阶无穷小量。不用证明
因为e^x在x趋近于0时,等价无穷小是x+1e的-x次方=1/(e的x次方)所以当X趋近0时,1-(e的-x次方)的等价无穷小是1-1/(x+1)=x/(x+1)
e^tan-e^x=e^x(e^(tanx-x)-1),x→0时,e^x→1,e^(tanx-x)-1等价于tanx-x,所以e^tan-e^x等价于tanx-x.所以,x→0时,tanx-x等价于x
等价无穷小的代换是有条件是,适用于乘法运算中,不适用于加减运算.一般教材中都会提到的,千万别随便代入哦.
当x→0时,sinx~tanx;1-cosx~0.5x²而lim【x→0】cosx=1,不是无穷小,所以不存在等价无穷小一说!如果考虑的是x→π/2,则由lim【x→π/2】cosx/[(π
x->0是统一的,就不写了.用洛必达法则lim[(1+x)^a-1]/(ax)=lima(x+1)/a=lim(x+1)=1
y=arctan3xy'=(arctan3x)'={1/[1+(3x)^2]}*(3x)'=3/(1+9x^2)等价无穷小,则当x->0时arctan3x/(ax/cosx)=1即arctan3x/x
洛必达法则或者展开e^x也可以
x-0时,ln(1+ax/2)~ax/2所以a/2=1a=2
当x趋近于0lim[(1+x)^a-1]=lim{[(1+x)^(1/x)]^(ax)-1}=lim[e^(ax)-1]∵x趋近于0,有e^x-1x∴ax趋近于0,有e^(ax)-1~ax所以有(1+
lim[ln(1+u)/u]=u→0lim[ln(1+u)^(1/u)]=u→0=lne=1
sinx~xtanx~x1-cosx~x^2/2secx-1~x^2/2ln(1+x)~xe^x-1~x(1+x)^a~ax(a不等于0)arcsinx~xarctanx~x
等价无穷小,则当x->0时limtanx/(ax/cosx)=1即limasinx/x=1alimsinx/x=1a=1
√(x^2+1)-1=[√(x^2+1)-1][√(x^2+1)+1]/[√(x^2+1)+1]=x^2/[√(x^2+1)+1]~x^2/[1+1]=x^2/2,因此为x的高阶无穷小因为|xsin1
x当x趋于0
由泰勒展开式sinx=x-x^3/3!+x^5/5!-...(-1)^(k-1)*x^(2k-1)/(2k-1)!+...所以x-sinx=x^3/3!-x^5/5!+...(-1)^k*x^(2k-
错在(2-2sin(x/2)*cos(x/2)/(x/2))=2(2-2cos(x/2))这一步你默认了sinθ/θ=1,实际上本题就是要求出sinθ的更高阶无穷小量,这样忽略“过头”了.事实是,si
lim(x→0)(x-sinx)/(ax^3)=lim(x→0)(1-cosx)/(3ax^2)=lim(x→0)(x^2/2)/(3ax^2)=1/(6a)=1a=1/6