求1 (1 e^x)的不定积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 07:09:29
一个分部积分法就搞掂了注意sinx/(1+cosx)=tan(x/2)关于这个积分是否可积,要先经过数学软件计算结果才知道,不要见到难就说不可积.
如图所示.
∫1/(1+e^x)dx=∫1/[e^x(1+e^x)]d(e^x)=∫[1/e^x-1/(1+e^x)]d(e^x)=x-ln(1+e^x)+C
答:1.∫arcsinxdx可用分部积分原式=xarcsinx-∫x/√(1-x^2)dx=xarcsinx+√(1-x^2)+C2.∫e^(√x+1)dx换元,令√(x+1)=t,则x=t^2-1,
e^x=y∫(e^x-1)/(e^x+1)dx=∫(y-1)/(y+1)/ydy=∫(2/(y+1)-1/y)dy=2ln(y+1)-ln(y)=2ln(e^x+1)-ln(e^x)=2ln(e^x+
∫1/(e^x)dx=∫(e^-x)dx=-e^(-x)+C
∫e^xdx/(1+cosx)+∫e^xsinxdx/(1+cosx)=∫e^xdtan(x/2)+∫tan(x/2)de^x=e^xtan(x/2)-∫tan(x/2)de^x+∫tan(x/2)d
求个导你就发现答案错了arctan根号(1-e^x)求导出来的是[(1/2)(1-e^x)^(-1/2)*(-e^x)]/(1+1-e^x)分母是2-e^x不可能消掉的你的是对的再问:可是我用数学软件
∫(x+1)e∧xdx=∫(x+1)de∧x=(x+1)e∧x-∫e∧xd(x+1)=(x+1)e∧x-e∧x=xe∧x
用第一换元法即可……设u=e^x,则du=e^xdx,积分即可化为∫du/(1-u^2)=-1/2ln|(u-1)/(u+1)|=-1/2ln|(e^x-1)/(e^x+1)|
分子分母同除以e^x,原积分=积分(e^(-x)dx/(e^(-x)+3e^x)=(变量替换e^(-x)=t)积分(-dy/(y+3/y))=积分(-ydy/(y^2+3))=-【ln(y^2+3)】
令u=√(x+1),x=u²-1,dx=2udu∫e^[2√(x+1)]dx=2∫ue^(2u)du,之后分部积分法=2∫ud(1/2*e^(2u))=∫ud(e^(2u))=ue^(2u)
∫e^(-3x+1)dx=∫e^(-3x+1)*(-1/3)[de^(-3x+1)]=-1/3∫e^(-3x+1)d[e^(-3x+1)]=--1/3e^(-3x+1)+CC为任意常数如果有疑问请点【
∫1/(e^x-1)=∫(1-e^x+e^x)/(e^x-1)dx=-∫dx+∫e^x/(e^x-1)dx=-x+ln(e^x-1)+C欢迎追问
该题用凑微分法如下图计算.经济数学团队帮你解答,请及时采纳.
结果无法用初等函数表示,用浏览器算了一下,结果如下:
∫e^2xsecx^2dx+∫2e^2xtanxdx=∫e^2xdtanx+∫tanxde^2x=e^2xtanx-∫tanxde^2x+∫tanxde^2x+C=e^2xtanx+C
∫1/(1+e^x)dx=∫e^(-x)/(1+e^(-x))dx=-∫1/(1+e^(-x))d(1+e^(-x))=-ln(1+e^(-x))+C=-ln((1+e^x)/e^x)+C=x-ln(