求x-lnx的平方分之1-lnx的不定积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 00:58:57
lim(x->0)(lnx)ln(1+x)=lim(x->0)(ln1+x)/(1/lnx)----用洛必达法则一次=lim(x->0)1/(1+x)/[-(1/x)/(ln²x)]=lim
x→1limln(x-1)*lnx=limln(x-1)*ln(1+x-1)利用等价无穷小ln(1+x)~x=limln(x-1)*(x-1)换元t=x-1=lim(t→0)lnt/1/t该极限为∞/
原式=limln[(x-1)/x]/(1/x)所以是0/0型用洛必达法则=lim[1/(x-1)-1/x]/(-1/x²)=-limx/(x-1)=-1
趋近于极限后x+1----xln(x+1)------x+1-----xlnx-----x所以原式为x^2/x^2=1再问:我看很多都说lim(lnx/x)=0(x趋向于正无穷)那原式也要变0了再答:
lim(x→∞)x[ln(1+x)-lnx]=lim(x→∞)x·ln[(1+x)/x]=lim(x→∞)ln[(1+x)/x]^x=lnlim(x→∞)[1/x+1]^x=lne=1.----[原创
通分lnx/(1+x)^2-lnx+ln(1+x)=[lnx-(lnx-ln(1+x))(1+x)^2]/(1+x)^2=lnx(-2x-x^2)/(1+x)^2+ln(1+x)(1+x)^2/(1+
ln((x+1)/x),因为(x+1)/x在x趋向于无穷大是趋向于1,这中间实际用到了连续函数极限的性质.
原式=1/2*lnx+√(lnx)所以y'=1/2*1/x+1/(2√lnx)*(lnx)'=1/(2x)+1/(2√lnx)*1/x=1/(2x)+1/(2x√lnx)
首先,定义域x>0求导f'(x)=-xlnx/[x(x+1)^2]另g(x)=-xlnx但是g(x)这个函数我们也没有研究过,所以继续求二重导g'(x)=-lnx-1根据g'(x)图像不难得出,g(x
如图,有不清楚请追问.请及时评价.
[ln(x+1)/lnx]'=[lnx/(x+1)-ln(x+1)/x]/ln²x=[xlnx-(x+1)ln(x+1)]/[x(x+1)ln²x]这个函数的导数很简单啊,没必要用
1/x(x+1)=1/x-1/(x+1)所以原式=∫[(ln(x+1)-lnx]*[1/x-1/(x+1)]dx=∫[(ln(x+1)-lnx]d[lnx-(ln(x+1)]=-∫[lnx-ln(x+
x→0时lnx→-∞ln(lnx)无意义∵limln[ln(1+x)]/lnx=lim[1/ln(1+x)*1/(1+x)]/(1/x)=limx/[(1+x)ln(1+x)]=lim1/[ln(1+
是求x[ln(x+1)-ln(x)]的极限吧?lim(x->∞)x[ln(x+1)-ln(x)]=lim(x->∞)ln((x+1)/x)/(1/x)(0/0型罗比塔法则)=lim(x->∞)(x/(
我发图了如是求不定积分就容易了,就是(lnx)^x+C
解法1:[ln(x+1)-lnx]'=[ln(x+1)]'-(lnx)'=1/(x+1)-1/x=x/[x(x+1)]-(x+1)/[x(x+1)]=[x-(x+1)]/[x(x+1)]=(x-x-1
当x∈(0,1)时,有ln(1-x)=-Σ1/n*x^n(n从1到+∞)故∫(0到1)lnx*ln(1-x)dx=∫(0到1)lnx*[-Σ1/n*x^n]dx(n从1到+∞)=-Σ∫(0到1)lnx
∫[ln(lnx)+1/lnx]*dx=∫ln(lnx)*dx+∫1/lnx*dx=xln(lnx)-∫x*d(ln(lnx))+∫1/lnx*dx=xln(lnx)-∫x*1/lnx*1/x*dx+
lim_{x趋于正无穷}(1+1/x)^x=elim_{x趋于正无穷}{x[ln(x+1)-lnx]}=lim_{x趋于正无穷}{xln[(x+1)/x]}=lim_{x趋于正无穷}ln{[(x+1)
(lnx))/(x+lnx)开始我试着用凑微分的方式做,无果.然后我观察了下,由于是(x+lnx)^2做分母,所以认为是一个以(x+lnx)为分母的分式,设分子为(Ax+Blnx).求导,待定系数求出