e的x开方的积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:16:03
令e^x=u,则du=de^x=e^xdx=udx,有du/u=dx所以原式=∫du/u(1+u)²=∫du/u-∫du/(u+1)²-∫du/(u+1)=lnu+1/(u+1)-
我想LZ的意思是求不定积分:∫(e^x)/(1+e^2x)dx=∫1/(1+e^2x)d(e^x)然后用第二类换元法,令e^x=tant,则t=arctan(e^x)代入可得:∫1/(1+e^2x)d
令根号下1+e^x=t则有1+e^x=t^2dx=[2t/(t^2-1)]dt原式=2∫t^2/(t^2-1)dt=2∫1+1/(t^2-1)dt=2t+ln|(t-1)/(t+1)|+c再问:1/(
-(1-exp(-6243314768165359/4503599627370496))^(1/2)-1/2*log(1-(1-exp(-6243314768165359/45035996273704
可以通过一维正态分布的公式来推出积分的值
1/2*x^2*e^(x^2)-1/2*e^(x^2)
∫xe^(-x)dx=-∫xe^(-x)d(-x)=-(xe^(-x)-∫e^(-x)dx)=-(xe^(-x)+∫e^(-x)d(-x))=-(xe^(-x)+e^(-x)+C)=-xe^(-x)-
∫x^2*e^(x^2)dx和∫x^2*e^(-x^2)dx,不定积分均无法用初等函数表示,但∫x^2*e^(-x^2)dx在[0,+∞)上的定积分可求出∫(0→+∞)x^2*e^(-x^2)dx=∫
∫e^(-2x)dx=-1/2∫e^(-2x)d(-2x)=-1/2∫de^(-2x)=-e^(-2x)/2+C
∫0~√(ln2)x×e^(x^2)dx=1/2×∫0~√(ln2)2x×e^(x^2)dx=1/2×∫0~√(ln2)e^(x^2)d(x^2)令t=x^2=1/2×∫0~(ln2)e^tdt=1/
1+e^x=t^2x=ln(t²-1)dx/dt=2t/(t^2-1)
∫x^2e^(-x)dx=-∫x^2d[e^(-x)]=-x^2e^(-x)+∫e^(-x)dx^2=-x^2e^(-x)+∫2xe^(-x)dx=-x^2e^(-x)-2∫xd[e^(-x)]=-x
e^(x^2/2)的原函数不是初等函数.用刘维尔第三定理即可证明.用正态分布的概率分布函数积分=1其中=0,方差=1带入然后进行化简就可以了
令√x=t,x=t^2,dx=2tdt.故S(0,e)e^√xdx=S(0,√e)e^t*2tdt=2S(0,√e)td(e^t)=2[te^t(0,√e)-S(0,√e)e^tdt]=2[(t-1)
I=∫xe^(-x^2)dx=1/2∫e^(-x^2)dx^2(t替换x^2)=1/2∫e^(-t)dt=-1/2e^(-t)(x^2替换t)=-1/2e^(-x^2)希望采纳
如果X大于1将X的开方减X-1的开方大如果等于1
原式=-∫xe^(-2x)d(-2x)=-∫xde^(-2x)=-xe^(-2x)+∫e^(-2x)dx=-xe^(-2x)-(1/2)∫e^(-2x)d(-2x)=-xe^(-2x)-(1/2)e^
先考虑A=∫(tanx)^(1/2)dx令t=(tanx)^(1/2)则t∈[0,∞]2tdt=[(tanx)^2+1]dxdx=2tdt/(t^4+1)A=∫2t^2dt/(1+t^4)=∫(t^2
∵2x-6的开方与2+y开方互为相反数∴√(2x-6)+√(2+y)=0∴2x-6=02+y=0x=3y=-2∴x-y=3-(-2)=5