求Y=KX^2的偏微分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 22:07:06
dy=e^(x^x)(e^(xlnx))'dx=e^(x^x)*(x^x)*(1+lnx)
symsx;diff(sin(x^2)^3)结果为:ans=6*sin(x^2)^2*cos(x^2)*x
等式两边同时求导得:2y*y'+y'/y=4*x^3-->y'=4y*x^3/(2y^2+1)y'=dy/dx-->dy=y'*dx=dx*4y*x^3/(2y^2+1)
y=sin2x/(1+cosx)=2cosx*sinx/(1+cosx)=2cosxtan(x/2)y'=2tan(x/2)*(-sinx)+2cosx*sec²(x/2)*1/2=cosx
如果对x求导,则ln|x|=yln|y|,1/x=y'/y+yy'/y=y'/y+y',.对数求导法.如果对y求导,则ln|x|=yln|y|,x'/x=ln|y|+y/y,x'=y^y(1+ln|y
分步积分.先把e^-2x放进去.再问:可以写具体过程吗?再答:看我插入的图片。
解y'=(e^sinx²)'=e^sinx²(sinx²)'=cosx²e^sinx²×(x²)'=2xcosx²e^(sinx&
1y`=1+2xdy=(1+2x)dx2y`=2tanx(secx)^2dy=[2tanx(secx)^2]dx
1.d(cosx)^2=2cosx(-sinx)dx=-sin2xdx2.dsin(x²-1)=cos(x²-1)d(x²-1)=cos(x²-1)×2xdx=
y'=2^(x²)*ln2*(x²)'=2x*2^(x²)*ln2
y'=[(lnx)'sinx-lnx*(sinx)']/(sinx)^2=(sinx*1/x-lnx*cosx)/(sinx)^2所以dy=(sinx*1/x-lnx*cosx)/(sinx)^2dx
y=[ln(1-x)^2]^2y'=2[ln(1-x)^2]*[ln(1-x)^2]'=2[ln(1-x)^2]*[2ln(1-x)]'=2[ln(1-x)^2]*2*1/(1-x)=4*[ln(1-
y'=2e^2xcos(e^2x)把y看成复合函数sint,t=e^m,m=2x.复合函数求导,等于三个分别求导的积
-sinx-2x
dz=2xydx+x^2dy再问:有全过程吗再答:en我想知道这里的X^2Y是指的X得平方乘以Y吗?如果是过程如下:dz/dx=2xydz/dy=x^2dz=2xydx+x^2dy再问:是X的2Y次方
dz=(y+1/y)dx+(x-x/y^2)dy