求∫0-1x×e∧-xdx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:33:01
由微积分基本定理求导得f'(x)=0.5e^(-x)/根号(x),且f(1)=1.求积分时先用分部积分就可以了.原积分=2积分(从0到1)f(x)d(根号(x))=2根号(x)*f(x)|上限1下限0
1.∫sin5xdx=(1/5)∫sin5xd5x=-(1/5)cos5x+c2.∫[e^x/(1+e^2x)]dx=∫[1/(1+e^2x)]de^x=arctan(e^x)+c3.∫xe^xdx=
答:1)y=(x+2)e^(-1/x)lim(x→0+)(x+2)e^(-1/x)=2*0=0lim(x→0-)(x+2)e^(-1/x)=2*+∞=+∞所以:渐近线为x=02)∫e^(-x)sin2
∫sin2/3xdx=3/2∫sin2x/3d2x/3=-3/2×cos(2x/3)+C∫e^sinxcosxdx=∫e^sinxdsinx=e^sinx+C∫1\x^2sin1\xdx=-∫sin(
=-∫(0,1)dx∫(x^2,1)xsint/tdt=-∫(0,1)dt∫(0,t^1/2)xsint/tdx=-1/2cost|(0,1)=1/2(cos1-1)
f(e^x)=e^x+xf(x)=x+lnx∫f(x)dx=∫(x+lnx)dx=x^2/2+xlnx-x+C∫√(x-1)^3/xdx=∫√(x^3-3x^2+3x-1)/xdx然后一项项算就可以了
∫(1/x+lnx)e^xdx=∫1/x*e^xdx+∫e^xlnxdx=∫e^xdlnx+∫e^xlnxdx=e^x*lnx-∫lnxde^x+∫e^xlnxdx=e^xl*nx-∫e^xlnxdx
原式=f[0,1]1dx+f[o,1]-e^-xdx=[O,1]x+f[0,1]e^-xd(-x)=1-0+[0,1]e^-x=1+e^(-1)-1=1/e2,(1-e^入x)'=-入e^(入x)再问
=(1/3)∫d(3x^2-1)/√(3x^2-1)=(2/3)√(3x^2-1)+C
可拆成两项如图,第二项用分部积分计算.经济数学团队帮你解答,请及时采纳.谢谢!
=∫(0到1)(1/e)d(1/2)x^2=(1/2e)x^2(0到1)=(1/2e)积分公式uv|(a到b)-∫(a到b)vdu;还是算不出不需要这个公式你都已经算出来了还这么大费周折干嘛为什么不需
(1)原函数是F(x)=(lnx)/2+C;所以,定积分=F(e)-F(1)=1/2-0=1/2;(2)即3x-x-2的积分;原函数是F(x)=x-x/2-2x+C;
∫e^√xdx=2∫√xe^√xd√x=2∫√xde^(√x)=2√xe^(√x)-2∫e^√xd√x=2√xe^(√x)-2e^(√x)+C
∫(上限1下限0)1/1+e^xdx=∫(上限1下限0)dx-∫(上限1下限0)e^xdx/1+e^xdx=∫(上限1下限0)dx-∫(上限1下限0)d(1+e^x)/1+e^x=1-ln(1+e)+
∫x^2e^xdx=∫x^2d(e^x)使用分部积分法=x^2*e^x-∫e^xd(x^2)=x^2*e^x-∫2x*e^xdx=x^2*e^x-∫2xd(e^x)=x^2*e^x-2x*e^x+∫e
仔细点看!1.令u=x^2,e^xdx=d(e^x)=dv,原式=x^2e^x-2∫xd(e^x)=x^2e^x-2(xe^x-∫e^xdx)=x^2e^x-2(xe^x-e^x)+C2.原式=x^2