求∫∫(x y)dxdy,其中d为曲线x^2 y^2=4x围成的区域

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:08:20
求∫∫(x y)dxdy,其中d为曲线x^2 y^2=4x围成的区域
求二重积分∫∫根号下(R^2 -X^2-Y^2)dxdy,其中积分区域D为圆周X^2+Y^2=RX.

极坐标标∫∫√(R²-x²-y²)dxdy=∫∫r√(R²-r²)drdθ=∫[-π/2→π/2]dθ∫[0→Rcosθ]r√(R²-r&#

求·二重积分∫∫(x+y)^2dxdy,其中积分区域D:x^2+y^2≤4

∫∫(x+y)^2dxdy=∫∫(x²+y²+2xy)dxdy=∫∫(x²+y²)dxdy(这里由于函数2xy关于x为奇函数,区域D关于y轴对称,所以∫∫2xy

计算二重积分∫∫|y-x^2|dxdy,其中区域D={(x,y)|-1

用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2

求一道二重积分的计算求∫∫(x²+y²)dxdy,其中区域D为:(x-1)²+y²

用极坐标变换:x=rcosa,y=rsina,对应的积分区域为(rcosa-1)^2+r^2sin^2a

求二重积分∫∫D x^2*ye^xy dxdy D:0≤x≤1,0≤y≤2

先对y积分,后对x积分.=积分(从0到1)dx积分(从0到2)x^2ye^(xy)dy,对y的积分做变量替换xy=t,=积分(从0到1)dx积分(从0到2x)te^tdt=积分(从0到1)dx(te^

计算二重积分∫∫(X/1+XY)dxdy,D=[0,1]*[0,1]

【数学之美】团队为你解答,如果解决问题请采纳.

计算二重积分∫∫(D)3xy^2dxdy,其中D由直线y=x,x=1及x轴所围成区域

积分区域:0≤x≤1,0≤y≤x∫∫3xy^2dxdy=3∫xdx∫y^2dy=3∫x[y^3/3]dx=3∫x*x^3/3dx=∫x^4dx=x^5/5=1/5

利用二重积分的几何意义求∫∫dxdy= ,其中D:X²+Y²≤2X

被积函数f(x,y)呢?如果认定被积函数f(x,y)=1,那么二重积分所表示的几何意义就是:以圆(x-1)²+y²=1为底,高度为1的圆柱体的体积.因为积分区域D:x²+

利用高斯公式求曲面积分∫∫xy²dydz+yz²dzdx+zx²dxdy 其中Z为单位求面

P=xy²,Q=yz²,R=zx²P对x的偏导数=y²,Q对y的偏导数=z²,R对z的偏导数=x²利用高斯公式,原式=3重积分∫∫∫(y&#

求积分∫∫(x^2+zx)dydz+(y^2+xy)dzdx+(z^2+yz)dxdy,其中积分沿曲面外侧,x^2+y^

这个锥面没有盖吗?补上平面S:z=h,上侧∫∫(Σ+S)(x²+zx)dydz+(y²+xy)dzdx+(z²+yz)dxdy=∫∫∫Ω[(2x+z)+(2y+x)+(2

计算二重积分、∫∫[D](x/y^2)dxdy,其中D是曲线y=x,xy=1及x=2围成

原式=∫<1,2>dx∫<1/x,x>(x/y²)dy=∫<1,2>x(x-1/x)dx=∫<1,2>(x²-1)dx=2³

计算二重积分,∫∫4(x*2+y*2)dxdy,)其中D:x*2+y*2

直接用常规积分解比较繁琐,而且涉及到特殊形式积分,改为(r,θ)坐标,即∫∫4r^2drdθ,其中θ积分限为(0,2π),r为(0,1),这样积分得8/3πr^3|(0,1),结果为8/3π

二重积分求∫∫[y/(1+x^2+y^2)^(3/2)]dxdy 其中 D:0

化为二次积分(先对y积分)∫∫[y/(1+x^2+y^2)^(3/2)]dxdy=∫(0→1)dx∫(0→1)y/(1+x^2+y^2)^(3/2)dy(对y积分的原函数是-1/√(1+x^2+y^2

∫∫ye^(xy)dxdy,其中D是由曲线xy=1与x=1,x=2,及y=2的所围成的平面区域

∫∫Dye^(xy)dσ=∫(1→2)dx∫(1/x→2)ye^(xy)dy=∫(1→2)(2x-1)/x²•e^(2x)dx=[(1/x)•e^(2x)]|(1→2

∫∫ye^(xy)dxdy,其中D是由曲线xy=1与x=1,x=2,及y=2所围

原式=∫[1,2]dx∫[1/x,2]ye^(xy)dy=∫[1,2]dx∫[1/x,2]y/xe^(xy)d(xy)第一个对y的积分中x是常数=∫[1,2]1/xdx∫[1/x,2]yde^(xy)

∫∫(x^2+y)dxdy,其中D为直线y=x,x=2和双曲线xy=1所围成的区域, 计算二重积分.

∫∫(D)(x²+y)dxdy=∫(1→2)dx∫(1/x→x)(x²+y)dy=∫(1→2)[x²y+y²/2]|(1/x→x)dx=∫(1→2)[x

二重积分I=∫∫(1+xy)/(1+x^2+y^2)dxdy其中D={(x,y)/x^2+y^2=0}

I = ∫∫ (1 + xy)/(1 + x² + y²) dxdy,D&nbs

用极坐标计算二重积分∫∫[D]arctan(y/x)dxdy,其中=D:1

∫∫[D]arctan(y/x)dxdy=∫dθ∫arctan(sinθ/cosθ)rdr(作极坐标变换)=∫dθ∫r^2dr=(π/4)(8/3-1/3)=7π/12.再问:书本答案是3(π^2)/