求一条通过原点,且在任意点处的切线的斜率为2x y的曲线方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:10:43
根据题意有:y'=x+y,y(0)=0即y'-y=x特征根为1,y1=ce^x设y*=ax+b,y*'=a,代入方程得:a-ax-b=x,得:-a=1,a-b=0故a=-1,b=-1,y*=-x-1故
这种题目实际上是由它在点(x,y)处的切线斜率等于.求微分方程得到到曲线方程的一般解析式,而后代入(0,0)即可得到曲线方程.具体解题方法因题目不清无法解析
曲线的切线斜率为dy/dxdy/dx=2x+y,就是y'-y=2x首先考虑特解,显然y=-2x-2是方程的一个特解而对于y'-y=0,可以知道dy/y=dxlny=x+Cy=Ce^x所以方程通解为Ce
这个是等轴双曲线设为x²-y²=m代入(4 -根号10)16-10=mm=6方程为x²-y²=6即x²/6-y²/6=1
由题意设双曲线方程:x^2/a^2-y^2/b^2=1或y^2/a^2-x^2/a^2=1(a>0,b>0)双曲线的渐近线方程为y=±(b/a)x或y=±(a/b)x∵一条渐近线方程为y=x∴a=b∵
y'=2x-yy'+y=2x对应齐次方程的特征多项式为:r+1=0r=-1设特解为:y*=ax+b代入原方程后得:a=2b=-2故通解为:y=ce^(-x)+2x-2将y(0)=0代入得:c=2故曲线
分部积分,把f''(x)放到后面去
设点A坐标为(a,a²/4)4y=x²对x求导得:y'=x/2所以直线I斜率为a/2,直线AB斜率为-2/aAB直线方程为y-a²/4=(-2/a)(x-a),令x=0解
曲线在(a,y(a))处的切线方程为y=y'(a)(x-a)+y(a)它与原点的距离=|-ay'(a)+y(a)|/√(1+y'(a)²)=|a|平方,得:a²y'²+y
由题意,得y'=2x+yy(0)=0j解y‘=2x+yy’-y=2xy=e^∫dx[∫2xe^(-∫dx)dx+c]=e^x(-2xe^(-x)-2e^(-x)+c)代入x=0,y=0,得0=-2+c
曲线的切线斜率为dy/dxdy/dx=2x+y,就是y'-y=2x首先考虑特解,显然y=-2x-2是方程的一个特解而对于y'-y=0,可以知道dy/y=dxlny=x+Cy=Ce^x所以方程通解为Ce
由题意设双曲线方程:x^2/a^2-y^2/b^2=1或y^2/a^2-x^2/a^2=1(a>0,b>0)双曲线的渐近线方程为y=±(b/a)x或y=±(a/b)x∵一条渐近线方程为y=x∴a=b∵
切线方程Y-y=y'(X-x),在y轴上的截距y-xy',所以y-xy'=√(x^2+y^2),又y(1/2)=0,解此微分方程的特解.得y=√(x^2+y^2)-1/2
依题意,即有微分方程:y'=2x+y,y(0)=0得y'-y=2x特征根为r=1设特解y*=ax+b,代入方程得:a-ax-b=2x,对比系数:-a=2,a-b=0得a=-2,b=-2故通解为y=Ce
y'=3x-yy'+y=3x两边同乘e^x,e^xy'+e^xy=3xe^x→e^xy'+(e^x)'y=3xe^x→(e^xy)'=3xe^x两边同时积分:e^xy=(3x-1)e^x+c右边积分用
抛物线的表达式:y=ax²+bx+c①由于过原点得:c=0=>表达式:y=ax²+bx②对称轴是x=-7/2,得:-b/(2a)=-7/2=>b=7a③经过A(1,-16),得:-
过原点和一个已知点,则经过原点和已知点的直线是圆的弦圆心为弦中垂线和已知直线的交点1.两点式求出弦所在直线方程和斜率2.求出弦中点坐标,点斜式求出中垂线方程3.联立弦所在直线方程和中垂线方程求出交点坐
设这曲线的方程为y=f(x),∵该曲线上任一点M(x,y)处的切线的斜率是y′=f′(x),此点与原点的连线的斜率是y/x.又它们互相垂直.∴y′y/x=-1.解此微分方程得y²+x&sup
MO斜率y/x,M处切线斜率-x/y∴dy/dx=-x/y2ydy=-2xdx两边同时积分y^2=-x^2+C过(1,1),1=-1+C,C=2∴曲线方程y^2=-x^2+2,即x^2+y^2=2