求不定积分∫1 1 根号下2x 1 dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:50:10
令u=√v,v=4x²+1,dv=8xdx∫√(4x²+1)dx=∫√v*1/(8x)*dv,这个x无法抵消,所以要用另一种代换法√(4x²+1)=√[(2x)²
答:∫dx/[1+√(1-x^2)]设x=sint,-π/2
答:∫x/√(1+x^2)dx=(1/2)∫[1/√(1+x^2)]d(x^2)=(1/2)∫(1+x^2)^(-1/2)d(x^2+1)=√(1+x^2)+C
令t=√(x^2-9),t^2=x^2-9,2tdt=2xdxtdt=xdx积分号下:√(x^2-9)dx/x=√(x^2-9)xdx/x^2(分子分母同乘以x)=t*tdt/(t^2+9)=t^2d
经济数学团队为你解答,有不清楚请追问.请及时评价.
答案:(x/2)√(x²-a²)-(a²/2)ln|x+√(x²-a²)|+C令x=a*secz,dx=a*secztanzdz,假设x>a∫√(x&
enwu
分母应该是√(1-e^2x)吧令e^x=t,x=lnt,dx=1/tdt∫e^x/√(1-e^2x)dx=∫t/√(1-t²)•1/tdt=∫1/√(1-t²)dt=a
另根号(1+x²)=t原式=∫根号(t²-1)dt另根号(t²-1)=tanβt=secβ则原式=∫1/cos³βdβ=∫tanβsecβ+secβdβ=sec
∫cos√(x+1)d(x+1)=∫cos√(x+1)d(√(x+1)^2√(x+1)=t=∫costdt^2=∫2tcostdt=∫2tdsint=2tsint-2∫sintdt=2tsint+2c
我大致说一下吧,把等式换成常数+或者-一个分子没有x的式子,然后将这个式子拆分,答案应该是c【x+ln(ax+b)-ln(ax-b)】abc都是常数再问:�ܽ���
∫x^2√xdx=∫x^(5/2)dx=2/7*x^(7/2)+C再问:∫x^(5/2)dx里的5/2怎么得出来的?再答:√x=x^(1/2)
∫e^√xdx=2∫√xe^√xd√x=2∫√xde^(√x)=2√xe^(√x)-2∫e^√xd√x=2√xe^(√x)-2e^(√x)+C