求不定积分∫Xe-2xdx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 12:52:52
∫xe^(x^2)dx=1/2∫e^(x^2)d(x^2)=1/2e^(x^2)
(1)∫xe^-xdx=-∫xd(e^-x)=-xe^(-x)+∫e^-xdx=-xe^(-x)-e^(-x)+C=-(x+1)e^(-x)+C(2)∫x³lnxdx=∫lnxd(xS
∫arctanxdx=x*arctanx+∫x/(1+x²)dx=x*arctanx-1/2*ln(1+x²)+C
1.∫sin5xdx=(1/5)∫sin5xd5x=-(1/5)cos5x+c2.∫[e^x/(1+e^2x)]dx=∫[1/(1+e^2x)]de^x=arctan(e^x)+c3.∫xe^xdx=
∫xe^(x^2)dx=(1/2)e^(x^2))+C
原式=∫xsinx/cos^3(x)*dx=-∫x/cos^3(x)*d(cosx)=1/2∫xd(1/cos^2(x))=x/(2cos^2(x))-1/2∫dx/cos^2(x)=x/(2cos^
=(1/3)∫d(3x^2-1)/√(3x^2-1)=(2/3)√(3x^2-1)+C
不定积分的答案是一系列的曲线族,并不唯一的.所以有无限多个答案,选哪个都是正确的!∫ secx dx = (1/2)ln|(1 + sinx
1/2∫e^2xdx=1/4∫e^2xd2x是因为dx变为d2x了dx=(1/2)d2x1/2∫e^2xdx=1/2∫e^2x(1/2)d2x=1/4∫e^2xd2x
可拆成两项如图,第二项用分部积分计算.经济数学团队帮你解答,请及时采纳.谢谢!
∫cos²xdx=∫cosxdsinx=sinxcosx-∫sinxdcosx=sinxcosx+∫sin²xdx=sinxcosx+∫(1-cos²x)dx=sinxc
用分部积分法,先把x^2放到dx里面然后分部积分再把dlnx变成1/xdx
换元法:令arcsinx=u,则x=sinu,dx=cosudu原式=∫u²cosudu=∫u²dsinu分部积分=u²sinu-2∫usinudu=u²sin
∫cosx/xdx是超越积分,已经被证明了它的不定积分不可积.因此是没有答案的.只能求定积分,而且求定积分只能求特殊点,也不能用牛顿-莱布尼茨公式.你在哪里看到的题目呀?
∫x^2√xdx=∫x^(5/2)dx=2/7*x^(7/2)+C再问:∫x^(5/2)dx里的5/2怎么得出来的?再答:√x=x^(1/2)
它的原函数无法用初等函数表达.再答:有不懂之处请追问,望采纳。
∫e^√xdx=2∫√xe^√xd√x=2∫√xde^(√x)=2√xe^(√x)-2∫e^√xd√x=2√xe^(√x)-2e^(√x)+C
∫xarctanxdx=∫arctanxd(x^2/2)=x^2/2*arctanx+(1/2)∫x^2/(1+x^2)*dx=(1/2)(x^2arctanx+x-arctanx)+C
你那个是反常积分,不定积分如下:∫xe^xdx=∫xd(e^x)=x(e^x)-∫(e^x)dx=x(e^x)-e^x+C
答:∫√lnx/xdx=∫√lnxd(lnx)=(2/3)*(lnx)^(3/2)+C