求与双曲线x^2 3-y^2=1共渐近线且过点(根号3,2)的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:23:58
求与双曲线x^2 3-y^2=1共渐近线且过点(根号3,2)的
已知双曲线与椭圆X^2/9+y^2/25 =1共焦点,它们的离心率之和为14/5,求双曲线方程.

椭圆X^2/9+y^2/25=1a=5,b=3所以c=4e=c/a=4/5所以焦点是(0,4),(0,-4)所以双曲线的离心率是14/5-4/5=2设双曲线是y^2/m^2-x^2/n^2=1则c^2

双曲线tx^2-y^2+1=0的一条渐近线与直线2x+y+1垂直,求t

tx^2-y^2+1=0化成y^2-tx^2=1,要使方程为双曲线,则t>0令y^2-tx^2=0,解得y=±√tx,该方程即为双曲线渐近线.若y=√tx与2x+y+1=0垂直,则√t*(-2)=-1

已知双曲线与椭圆4x^2+y^2=64共焦点,双曲线实轴长与虚轴长之比为√3:3,求双曲线方程

焦点坐标是(0,-4√3),(0,4√3)那么设双曲线方程为y²/a²-x²/b²=1所以a²+b²=c²=48①又双曲线实轴长与

与双曲线(X^2)-(Y^2)/2=1有相同的渐近线.且过点(2,2)的双曲线,求圆锥曲线的方程

1,设(X^2)-(Y^2)/2=m,将(2,2)带入,得m=2,所以(X^2)/2-(Y^2)/4=12设(Y^2)/2-(X^2)=n,带入,得n=-2,同1

已知双曲线y=3/x与直线y=ks+2相交求大神帮助

两个方程联立,得到关于X的一元二次方程,有伟达定理,两根之和等于-b/a,得到x1+x2=-2/k=3,k=-2/3,再代入就行了

已知双曲线与椭圆x^2/16+y^2/64=1有相同的焦点,它的一条渐近线为y=x,求双曲线的方程

因为它的一条渐近线为y=x那么可以设双曲线方程为y^2-x^2=c而椭圆x^2/16+y^2/64=1的焦点是(0,4√3)、(0,-4√3)因为焦点在y轴,所以c>0且c+c=(4√3)^2故c=2

双曲线渐近线方程为y=正负根号2/2x 双曲线过点(2,1),求双曲线方程

双曲线渐近线方程为y=正负根号2/2x即x±√2y=0设双曲线方程x²-2y²=k代入(2,1)4-2=kk=2方程为x²/2-y²=1

双曲线与椭圆x^/16+y^2/64=1有相同的焦点,它的一条渐近线为y=x,求此双曲线的方程.

椭圆c'²=64-16=48有相同的焦点则双曲线中c²=48渐近线y=x则b/a=1椭圆焦点在y轴所以是y²/a²-x²/a²=1且a

求与双曲线y^2/4-x^2/3=1有相同渐近线且过M(3.-2)的双曲线方程及离心率

设要求的双曲线为:y^2/4-x^2/3=k,把M(3,-2)代入欲求的双曲线方程中,4/4-9/3=k,k=-2,k为负值,说明实轴在X轴,焦点在X轴,y^2/4-x^2/3=-2,∴双曲线方程为:

求与双曲线x^2-y^2/4=1有共同渐近线,且过点M(2,2)的双曲线的标准方程

渐近线为:x^2-y^2/4=0设过m的双曲线方程为x^2-y^2/4=t(t不等于0)将(2,2)代入其中得t=3所以方程为x^2/3-y^2/12=1

已知双曲线X^2-Y^2/4=1,过点P(1,1)的直线l与双曲线只有一个公共点,求直线l的方程

/>分类讨论(1)若直线L的斜率不存在,此时直线为x=1,利用图像,容易知道直线与双曲线x²-y²/4=1只有一个公共点,满足题意;(2)若直线L的斜率存在,设直线L的方程为y-1

双曲线方程为x^2-y^2=1,设直线y=kx+1与双曲线c交于AB两点,求k的取值范围

将直线方程与双曲线方程联立得到(1-K^2)*X^2-2K*X-2=0当X=±1时,只有一个解,不符合题意当X≠±1时.要使得方程有两个解,必要满足△>0,即4K^2+8(1-K^2)>0.能够得到K

若双曲线与椭圆y^2/6+x^2/2=1共焦点,且经过点[2,根号15],求双曲线的标准方程

已知焦点为(0,2)和(0,-2)所以双曲线的c=2设y^2/a^2-x^2/b^2=1则a^2+b^2=4又过一点联立解a,

双曲线的离心率等于(根号5)/2,且与椭圆(x平方)/9=(y平方)/4=1有公共焦点,求此双曲线的方程

椭圆x^2/9+y^2/4=1的焦点为(-√5,0)(√5,0)依题意:c=√5.e=c/a=(√5)/2所以a=2b=1双曲线方程:x^2/4-y^2=1

已知双曲线x^2-y^2=1及支线y=kx-1 若直线与双曲线有交点 求k的范围

等价于联立后方程组有解x²-y²=1y=kx-1消y:(1-k²)x²+2kx-2=0当1-k²=0即k=±1时,有解当k≠±1,Δ≥0解得-√2≤k

已知双曲线与椭圆x^2/9 y^2/25=1共焦点,且离心率为2,求双曲线方程

双曲线c=4,从而a=2,所以b²=12.双曲线为y²/4-x²/12=1.

已知双曲线C与椭圆x^2/8+y^2/4=1有相同的焦点,直线y=根号3x为双曲线C的一条渐近线①求双曲线C的方程

椭圆x²/8+y²/4=1的焦点为(土2,0),依题意设双曲线方程为3x^2-y^2=m(m>0),m/3+m=4,m=3,∴双曲线方程为3x^2-y^2=3.①设l:y=kx+4

双曲线x^2-y^2/4=1,过P(1,1)的直线L与双曲线只有一个公共点,求l的方程

设L的方程为y-1=k(x-1),然后与双曲线方程联立,得到一个一元二次不等式,因为只有一个公共点,所以根的判别式为0,解出关于k的方程;然后考虑k不存在的情况,画图看看就ok了,因为此时L的方程就是

如果直线L过双曲线x^2/4-y^2/2=1的左焦点,且与双曲线仅有一个公共点,求直线L的方程.

a^2=4,b^2=2,c^2=6,左焦点F(-√6,0)设直线l:y=k(x+√6)与椭圆方程联立:(1-2k²)x²-4√6k²x-12k²-4=0当1-2

已知双曲线的离心率=2,且与椭圆x^2/25+y^2/9=1有相同的焦点,求次双曲线方程

椭圆:c=4故双曲线:c=4,e=c/a=2=4/a,a=2,b=2√3双曲线方程为:x^2/4-y^2/12=1