求两平面x-2y 2z 21=0及7x 24y-50=0的角平分面
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:59:52
(x,y),Z=x^2+y^2+(X+2y-16)^2/5,化简后,这方法最烦最好联想到三角形,圆的知识
两个平面的法向量分别为n1=(1,-1,1),n2=(2,1,1),因此它们的交线的方向向量为n1×n2=(-2,1,3),这也是与两个平面都垂直的平面的法向量,所以所求平面方程为-2(x-1)+(y
平面x+2z=1法向量:n1=(1,0,2)平面y-3z=2法向量:n2=(0,1,-3)又直线l的方向向量s与n1,n2垂直,故:s=n1×n2=(-2,3,1)l的点法式方程:(x-0)/(-2)
用定积分求,y=x^2,y=x交点(1,1)y=x^2,y=2x交点(2,4)先求y=x在【0,1】上面积S1,在求y=x^2在[1,2]上面积S2再求y=2x【0,2】上面积S3,S3-S1-S2就
∵e^x-z+xy=3==>z=e^x+xy-3==>αz/αx│(2,1,0)=e²+1,αz/αy│(2,1,0)=2∴在点(2,1,0)处切平面的法向量是(e²+1,2,-1
由积分的知识有:S=积分(0,2)x^2dx=1/3x^3|(0,2)=1/3*2^3=8/3
/>利用定积分求解交点是(1,1),(0,1)S=∫[0-->1](1-x²)dx=(x-x³/3)|[0-->1]=(1-1/3)-0=2/3
设P(x,y)是所求平面上任一点,则P到两平面的距离相等,即|x-2y+2z+21|/√(1+4+4)=|7x+24z-5|/√(49+576),因此(x-2y+2z+21)/3=±(7x+24z-5
再答:欢迎追问,希望采纳
底:D={(x,y)|0再问:图呐!!!发我邮箱吧ohyes@hk1229.cn再答:答案君去喝茶了,我发你
由曲线y=2-x²及直线y=2x-1,x=0围成的在y轴右边的区域D及D绕x轴旋转所得的旋转体楼主的题目叙述不完整.应为:求由曲线y=2-x²及直线y=2x-1,x=0围成的图形在
所求平面图形的面积=∫(1,2)lnxdx=(xlnx)|(1,2)-∫(1,2)dx(应用分部积分法)=(xlnx-x)|(1,2)=2ln2-2+1=2ln2-1
先求交点x=y^2/2=y+4y^2-2y-8=0(y-4)(y+2)=0y=4,y=-2x=y+4所以交点(8,4),(2,-2)围成的图形有一部分在x轴下方其中0
大概让求夹角余弦两平面夹角等于其法向量间的夹角,两平面夹角的余弦等于其法向量的数量除以各自长度的乘积cost=(2-1+2)/[√(4+1+4)√(1+1+1)]=3/(3*√3)=√3/3再问:答案
过直线3x-4y+6=0,2y+z-11=0的平面方程可设为(3x-4y+6)+a(2y+z-11)=0,也即π的方程可为,3x+(2a-4)y+az+6-11a=0,其中,a为待定参数.又π垂直于3
定积分就可以了 面积=ln2 过程如下图:
两平面交线的方程即是所求平面的法线,列出法向量,用点法式即可求出.求两平面交线的方向向量(即是所求平面的法向量)方法是:用行列式,可得下式:i=12-2j=3+12k=2+3所求平面的法向量就是{i,
设有两个平面P1和P2,其方程分别为x-2y+2z+21=0,7x+24z-5=0.P1和P2决定一直线,我们设为L.所有通过直线L的平面P的方程可以设为:x-2y+2z+21+K(7x+24z-5)
∫∫(3-x-y)dxdy=∫∫(3)dxdy=3π.【关键是利用被积函数奇偶性与积分区域对称性】因为x关于x为奇函数,D关于y轴对称,所以∫∫(x)dxdy=0类似地,有∫∫(y)dxdy=0
V=∫dt∫r*rdr=2π/3.