求函数f(x)=x*12按(x-100)的幂展开的带有拉格朗日型余项
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 13:41:06
求导=1-1/x²递减区间为(-1,0)和(0,1)极点为x1=-1,x2=1(此为一个典型的双勾函数)希望可以帮到你不懂再问我谢谢再问:我已经算出在X=+1,-1时候有极点了然后我把+1,
x>0则x=√(4/1)=2时最小f(2)=4最大在边界f(1)=1+4=5f(3)=3+4/3=13/35>13/3但x=1取不到所以最小值是4,没有最大值
f(x)+2f(-x)=x以-x代入上式中的x,得:f(-x)+2f(x)=-x,即2f(-x)+4f(x)=-2x两式相减得:-3f(x)=3x故有:f(x)=-x
f(2x+1)=(2x+1)/(x+1)令2x+1=t,x+1≠0,x≠-1x=(t-1)/2∴f(t)=f(2x+1)=(2x+1)/(x+1)=t/[(t-1)/2+1]=2t/(t+1)∴f(x
f(x)是一次函数,设为f(x)=kx+b(k≠0)f(kx+b)=4x-1=4/k(kx+b)-4b/k+1f(x)=4/k*x-4b/k+1与f(x)=kx+b对应系数相等得到:k=2,b=1/3
f'(x)=6x^2+6x-12=6(x+2)(x-1)∴当x<-2或x>1时,f'(x)>0,函数f(x)此时单增当-2再问:极大值25一致了,极小值上面的是-2,你的是-12.我对求函数极值是一窍
设一次函数f(x)=kx+b,→f[f(x)]=k(kx+b)+b=k*kx+kb+b=2x+1∴k*k=2,k=±√2kb+b=1,b(k+1)=1,b=1/(k+1)k=√2,时b=√2-1,k=
设f(x)=kx+bf[f(x)]=k(kx+b)+b=k^2x+(kb+b)=4x+1===>k^2=4,kb+b=b(k+1)=11.若k=2,则b=1/(k+1)=1/3f(x)=2x+1/32
因为f(x)=3x²-5x+2=(3x-2)*(x-1)f(f(x))=【3(3x²-5x+2)-2】*【(3x²-5x+2)-1】=27x^4-90x^3+96x^2-
设f'(x)=2kx+bf(x)=kx^2+bx+c则x^2f'(x)-(2x-1)f(x)=2kx^3+bx^2-[2kx^3+(2b-k)x^2+(2c-b)x-c]=(k-b)x^2+(b-2c
f'(x)=-3/x^2+2
因为|-a|=|a|所以f(-x)=|-x+2|-|-x-2|=|-(x-2)|-|-(x+2)|=|x-2|-|x+2|=-f(x)定义域是R,关于原点对称所以是奇函数
当x<0或者x>2时,f(x)=x³-2x²,f'(x)=3x²-4x.当0<x<2时,f(x)=2x²-x³,f'(x)=4x-3x².当
你几年级的?如果是高中学生,直接基本不等式就是结果啊.y=12/x+3x≥2√(12/x×3x)=2√36=12,x>0当且仅当12/x=3x,即x=2时取等号;所以:y≥12
f(x)+2f(1/x)=x用1/x代替x得:f(1/x)+2f(x)=1/x两边同时乘2得:2f(1/x)+4f(x)=2/x和原式相减得:3f(x)=2/x-x所以f(x)=2/(3x)-x/3
因为f(x)为二次函数,所以设f(x)=ax²+bx+c所以f(-x)=ax²-bx+c所以f(x)+2f(-x)=ax²+bx+c+2[ax²-bx+c]=3
1.设一次函数f(x)=kx+b,(k≠0),则f(f(x))=k(kx+b)+b=k²x+b(k+1),由题意,k²x+b(k+1)=1+2x,∴k²=2且b(k+1)
假设:X=Y/XY=X/Y带入函数就是:F(y/x,x/y)=(y/x+x/y)/(y/x—x/y)=x²+y²)/(y²-x²)希望可以帮助你!
1/xx>=11x
f(x)=ax²+bx+cf(x+1)=a(x+1)²+b(x+1)+c=ax²+2ax+a+bx+b+cf(x-1)=a(x-1)²+b(x-1)+c=ax&