求函数f(x)=x²-1/(x-1)x的间断点,并判断其类型
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 20:17:59
求导=1-1/x²递减区间为(-1,0)和(0,1)极点为x1=-1,x2=1(此为一个典型的双勾函数)希望可以帮到你不懂再问我谢谢再问:我已经算出在X=+1,-1时候有极点了然后我把+1,
x>0则x=√(4/1)=2时最小f(2)=4最大在边界f(1)=1+4=5f(3)=3+4/3=13/35>13/3但x=1取不到所以最小值是4,没有最大值
f(x)=2x²,f(-x)=2×(-x)²=2x即把-x带入x同理f(1+x)=2×(1+x)²=2x²+4x+2
f(1-x)+2f(x)=2(1-x)f(x)+2f(1-x)=2x连立,得到f(x)=4/3-2x
f(2x+1)=(2x+1)/(x+1)令2x+1=t,x+1≠0,x≠-1x=(t-1)/2∴f(t)=f(2x+1)=(2x+1)/(x+1)=t/[(t-1)/2+1]=2t/(t+1)∴f(x
f(x)是一次函数,设为f(x)=kx+b(k≠0)f(kx+b)=4x-1=4/k(kx+b)-4b/k+1f(x)=4/k*x-4b/k+1与f(x)=kx+b对应系数相等得到:k=2,b=1/3
复合函数求导啊.f(1/x)'=f(x)'*(1/x)'=-f(x)'/x^2再问:为什么不是f(1/x)再答:对哦。链式法则:若h(x)=f(g(x))则h'(x)=f'(g(x))g'(x)
设一次函数f(x)=kx+b,→f[f(x)]=k(kx+b)+b=k*kx+kb+b=2x+1∴k*k=2,k=±√2kb+b=1,b(k+1)=1,b=1/(k+1)k=√2,时b=√2-1,k=
2f(x)+f(1/x)=3x----(1)令x=1/t得2f(1/t)+f(t)=3/t等效于f(x)+2f(1/x)=3/x----(2)(1)*2-(2)得3f(x)=6x-3/x所以f(x)=
设f(x)=kx+bf[f(x)]=k(kx+b)+b=k^2x+(kb+b)=4x+1===>k^2=4,kb+b=b(k+1)=11.若k=2,则b=1/(k+1)=1/3f(x)=2x+1/32
设f(x)=ax^2+bx+c则f(f(x))=a(ax^2+bx+c)^2+b(ax^2+bx+c)+c≡2x+1展开后可解.展开后,左边四次项系数为a^3=0,即a=0重设f(x)=bx+c则f(
设f'(x)=2kx+bf(x)=kx^2+bx+c则x^2f'(x)-(2x-1)f(x)=2kx^3+bx^2-[2kx^3+(2b-k)x^2+(2c-b)x-c]=(k-b)x^2+(b-2c
由3f(x)+2f(1/x)=x+1令1/x=t,则3f(1/t)+2f(t)=1/t+1因为函数与表示自变量的字母无关,所以可以表示为3f(1/x)+2f(x)=1/x+1联立两式得f(x)=3x/
f(x)+2f(1/x)=x用1/x代替x得:f(1/x)+2f(x)=1/x两边同时乘2得:2f(1/x)+4f(x)=2/x和原式相减得:3f(x)=2/x-x所以f(x)=2/(3x)-x/3
这种题貌似只能用求导做了F(x)=x^2-1-2lnx,注意到F在x>0上定义F'(x)=2x-2/x解F'(x)=2(x-1/x)=0得x=1又当00,则F单调增故x=1为F的最小值点,F(1)=0
1.设一次函数f(x)=kx+b,(k≠0),则f(f(x))=k(kx+b)+b=k²x+b(k+1),由题意,k²x+b(k+1)=1+2x,∴k²=2且b(k+1)
f(-x)=2(-x)^2=2x^2f(1+x)=2(1+x)^2=2x^2+4x+2即-10≤3x-4≤5则-2≤x≤3即定义域【-2,3】
1/xx>=11x
f(x)=ax²+bx+cf(x+1)=a(x+1)²+b(x+1)+c=ax²+2ax+a+bx+b+cf(x-1)=a(x-1)²+b(x-1)+c=ax&
原函数即2F(u)+F(1/u)=3/u令u=1/x,则2F(1/x)+F(x)=3x----------------①方程①-原方程*2得-3F(x)=3x-6/x即F(x)=2/x-1哎,现在的孩