求微分方程y-7y 12y=-e^4x的通解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:52:28
y'=ylnydy/(ylny)=dx两边积分得lnlny=x+C分离变量得3e^x/(2-e^x)dx=-(secy)^2/tanydy两边积分得-3ln(2-e^x)=-lntany+C分离变量得
如图:\x0d
求微分方程的解y''+4*y'+4*y=e^-2xr*r+4r+4=0解方程得r1=r2=-2y''+4*y'+4*y=0的解为y=(C1+C2*x)e^-2x-2是重根,所以,特解为y=x*x*e^
特征方程r+1=0r=-1通解y=Ce^(-x)设特解y=axe^(-x)y'=ae^(-x)-axe^(-x)代入原方程得ae^(-x)-axe^(-x)+axe^(-x)=e^(-x)解得a=1因
e^x*e^ydy=dxe^ydy=e^(-x)dx积分:e^y=-e^(-x)+Cy=ln[C-e^(-x)]
特征方程r²-3r+2=0得r=1,2齐次方程通解y1=C1e^x+C2e^2x方程右边为e^x+e^3x设特解为y*=axe^x+be^3x则y*'=a(1+x)e^x+3be^3xy*"
Y''+3y'+2y=0的特征根:-1,-2由于右端3e^2x中,指数2不是根,设特解y=Ae^2x代入原方程:A=1/4y=C1e^(-2x)+C2e^(-x)+(1/4)e^2x
y'=e^(2x)/e^ye^ydy=e^(2x)dxe^y=(1/2)e^(2x)+Cy=ln[(1/2)e^(2x)+C]
左右除以x^2,y'/x+y(1/x)'=e^(x-1/x).左边就是(y/x)',两边关于x积分就能得到y=x(右边的不定积分+C).不过e^(x-1/x)不定积分没有初等函数表示啊……是不是抄错了
通解为:Ce^x+De^(2x)-x(x/2+1)e^x其中C,D为任意实数由题意知特征方程为:λ²-3λ²+2=0,故λ=1或2故可设特解为:x(ax+b)e^x将其代入原方程解
题目应该是y"+3y'+2y=e^x吧?特征方程为r^2+3r+2=0,得r=-1,-2即齐次方程的通解y1=C1e^(-x)+C2e^(-2x)设特解y*=ae^x,代入方程得:ae^x+3ae^x
y”+3y’+2y=6e^xt^2+3t+2=0t1=-1t2=-2Y=c1e^(-x)+c2e^(-2x)A=1,不是特征方程t^2+3t+2=0的根,取K=0y*=Be^xy’=Be^xy”=Be
将方程变形:y'*e^y=1-xy'再变形:(e^y)'=(x-xy+y)'e^y=x-xy+y+C(常数)下面自己解吧.
y‘=e^2x,两边积分得:y=e^2x/2+C
解得(假的,其实是电脑给的):y=-x+C1+xLn(x+C2)+C2Ln(x+C2)再问:求过程再答:哈哈,真是电脑做的,没过程呀用了反函数,可能丢解
这是一阶线性微分方程,其中P(x)=1,Q(x)=e-x∴通解y=e−∫dx(∫e−x•e∫dxdx+C)=e−x(∫e−x•exdx+C)=e−x(x+C).
特征方程R^2-R+2=0,特征方程的解为R1=-1,R2=2;微分方程特解为C1e^(-x)+C2e^(2x);特解为1/2e^x;通解为y=C1e^(-x)+C2e^(2x)+1/2e^x;C1,
是2阶常系数非齐次线性微分方程,特征方程r^2+a^2=0,特征根r=±ai,可设特解y=Ae^x,代入微分方程得A=1-a^2,则微分方程的通解是y=C1cosx+C2sinx+(1-a^2)e^x
y'=e^x[e^(-y)-1]dy/[e^(-y)-1]=e^xdxd(e^y)/(1-e^y)=e^xdx积分:ln|1-e^y|=e^x+c1得:1-e^y=ce^(e^x)