求方程dy dx=y (2x-y²)的通解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:30:46
方程两边求关x的导数ddx(xy)=(y+xdydx); ddxex+y=ex+y(1+dydx);所以有 (y+xdy
3(y-7)-6(x-y)=3y-21-6x+6y=9y-6x-21=3(3y-2x)-21=3*(-7)-21=-42
x^2+y^2-4x-2y+1=0(x-2)^2+(y-1)^2=4x^2+y^2=4x+2y-1设(x-2)^2=k(y-1)^2=4-kx^2+y^2+x+y=5x+3y-1x=2+根号ky=1+
x+y=ay=a-x代入2x²+3a²-6ax+3x²-6a+6x=05x²+(6-6a)x+(3a²-6a)=0x是实数所以△>=036-72a+3
方程两边对x求导得2x+y′x2+y=3x2y+x3y′+cosxy′=2x−(x2+y)(3x2y+cosx)x5+x3y−1由原方程知,x=0时y=1,代入上式得y′|x=0=dydx|x=0=1
令m=x(x+y),n=y(x+y)则m-n=x^2-y^2,于是m-n+1=2x^2,1-m+n=2y^2(m+n-1)^2=4x^2y^2=(m-n+1)(1-m+n)整理得:m^2+n^2-m-
y”+3y’+2y=e^(-x)它的齐次方程是y''+3y'+2y=0这个常微分方程的特征方程是r²+3r+2=0特征根为r=-1,r=-2所以齐次方程的通解为y=(C1)e^(-x)+(C
分别对y求导,求左边为1+【e^(x+y)×(dx/dy+1)】右边为2×dx/dy推的dx/dy:自己算下,没得草稿纸.
y'-y/[x(1-x)]=(1+x)^2为一阶线性微分方程.p=-1/[x(1-x)]=1/[x(x-1)]=1/(x-1)-1/x,Q=(x+1)^2∫pdx=ln[(x-1)/x],e^(∫pd
7y(x-3y)^2-2(3y-x)^3=[(x-3y)^2](2x+y)=6
7y(x-3y)²-2(3y-x)³=7y(3y-x)²-2(3y-x)³=(3y-x)²[7y-2(3y-x)]=(3y-x)²(7y-6
这是一阶线性微分方程,其中P(x)=1,Q(x)=e-x∴通解y=e−∫dx(∫e−x•e∫dxdx+C)=e−x(∫e−x•exdx+C)=e−x(x+C).
必然是y+x,x+z,y+z中两个等于1另一个等于0连列方程组或目测得001或010或100
根据式子可判断方程的另一特解是一个一次式设y2=ax+b为方程另一解,代入可得a=2b取a=2,b=1,则两解线性无关由二阶微分方程的通解结构可得原方程的通解为y=C1e^x+C2(2x+1)
(x-y^2)y'=1则x-y^2=dx/dy则dx/dy-x=y^2所以x=Ce^y+.再问:第三步怎么到第四步的?答案给的是x=Ce^y+y^2+2y+2再答:dx/dy-x=y^2分为两步第一、
∵齐次方程y''-2y'-3y=0的特征方程是r^2-2r-3=0,则r1=-1,r2=3∴此齐次方程的通解是y=C1e^(-x)+C2e^(3x)(C1,C2是常数)∵设原方程的解为y=(Ax+B)
两边对x求导xy^2+sinx=e^yy^2+2xyy'+cosx=e^y*y'y'(e^y-2xy)=y^2+cosxy'=(y^2+cosx)/(e^y-2xy)
主要利用复合函数的求导:z=f(y),y=g(x),则z对x求导dz/dx=f'(y)*(dy/dx).等式左边对x求导过程:d(lny)/dx=(1/y)y',等式右边对x求导过程:d(x-y)/d
在方程ex+y+cos(xy)=0左右两边同时对x求导,得:ex+y(1+y′)-sin(xy)•(y+xy′)=0,化简求得:y′=dydx=ysin(xy)−ex+yex+y−xsin(xy).