求方程e∧z=x y xyz所确定的隐函数z=f(x,y)的偏导数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 08:10:23
求方程e∧z=x y xyz所确定的隐函数z=f(x,y)的偏导数
求由方程e^z=xyz所确定的函数z=z(x,y)的一阶偏导数,看了你的答案,但不知道怎么得来的

这是隐函数,把z看成是x,y的函数.两边对x求导,得:e^z*z'x=yz+xy*z'x,这样得:z'x=yz/(e^z-xy)=yz/(xyz-xy)=z/(xz-x)两边对y求导,得:e^z*z'

设函数Z=Z(X,Y) 由方程XY=e^z-z所确定的隐函数,求a^2z/axay

e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,e^y-e^0=0,则e^y=1,则y=0所以y'(

设z=z(x,y)由方程x/z=ln(y/2)所确定的隐函数 求∂z/∂y,∂z/&

z=x/ln(y/2)z′(x)=1/ln(y/2)z′(y)=-x/ln(y/2)^2*(1/(y/2))*1/2=-2x/(y*ln(y/2)^2)

设函数 z=z(x,y)是由方程e^z-xyz=0 所确定的隐函数,求 əz/əy.

对y求导,e^z*z'(y)=xz+xyz'(y),əz/əy=z'(y)=xz/(e^z-xy)

设函数 z=z(x,y)是由方程e^z-xyz=0 所确定的隐函数,求 əz/əy

两边微分e^zdz-yzdx-xzdy-xydz=0(e^z-xy)dz=yzdx+xzdy∂z/∂y=xz/(e^z-xy)=xz/(xyz-xy)=z/(yz-y)

设Z=F(X,Y)是由方程E^Z-Z+XY^3=0确定的隐函数,求Z的全微分Dz

对方程两边求全微分得:(e^z-1)dz+y^3dx+3xy^2dy=0(方法和求导类似)移项,有dz=-(y^3dx+3xy^2dy)/(e^z-1)

设z=z(x,y)由方程x/z=ln(y/z)所确定的隐函数 求∂z/∂y,∂z/&

x=z(lny-lnz)对x求导1=∂z/∂x*(lny-lnz)+z*(0-1/z*∂z/∂x)1=∂z/∂x(lny-lnz

设z=z(x,y)是由方程e^(-xy)+2z-e^z=2确定 求dz|(x=2,y=-1/2)

对方程e^(-xy)+2z-e^z=2两边微分,有:e^(-xy)*d(-xy)+2*dz-e^z*dz=0-e^(-xy)*(x*dy+y*dx)+2*dz-e^z*dz=0移项,得:(e^z-2)

已知函数z=f(x,y)由方程xyz=e^xz所确定,试求z=(x,y)的全微分dz.

方程两边对x求偏导:yz+xyəz/əx=(z+xəz/əx)e^xz得:əz/əx=(ze^xz-yz)/(xy-xe^xz)方程两边对y

设函数z=z(x,y)由方程e^(-xy)-2z+e^z=0确定,求z/x,z/y

两端对x求偏导得:-ye^(-xy)-2(z/x)+(z/x)e^z=0,所以,z/x=ye^(-xy)/(e^z-2)两端对y求偏导得:-xe^(-xy)-2(z/y)+(z/y)e^z=0,所以,

求由方程e^z=xyz所确定的函数z=z(x,y)的一阶偏导数

对x求导,e^z*z'(x)=yz+xyz'(x),z'(x)=yz/(e^z-xy)对y求导,e^z*z'(y)=xz+xyz'(y),z'(y)=xz/(e^z-xy)

.设z=z(x,y)由方程sin z=xyz所确定的隐函数,求dz.

先对x求偏导数得z'(x)cosz=yz+z'(x)y所以z'(x)=yz/(cosz-y)同理对y求偏导数得z'(y)=xz/(cosz-x)所以dz=yz/(cosz-y)dx+xz/(cosz-

由方程e^z-xyz=0所确定的二元方程Z=f(x,y)全微分dz

我帮你做一步下面的你应该就会了,

设由方程x+2y+z=e^(x-y-z)确定的隐函数为z=z(x,y),求d^2z/dx^2

x+2y+z=e^(x-y-z)两边对x求偏导注意到z=z(x,y)1+z'=e^(x-y-z)*(1-z')...(1)再对x求偏导z"=e^(x-y-z)(1-z')^2-z"e^(x-y-z).

设函数z=(x,y)由方程x^2+z^2=2ye^z所确定,求dz

两边求微分的2xdx+2zdz=2e^zdy+2ye^zdz解得dz=(2e^zdy-2xdx)/(2z-2ye^z)=(e^zdy-xdx)/(z-ye^z)

z=f(x,y),由方程xy+e^xz=1+zlny所确定,求偏导数

F(x,y,z)=xy+e^xz-zlny-1.Fx=y+ze^xzFy=x-z/yFz=xe^xz-lnyz对x的偏导:-Fx/Fz=-(y+ze^xz)/(xe^xz-lny)z对y的偏导:-Fy

设函数z=z(x,y)由方程e的负xy次方-x的平方y+e的z次方=z所确定,求dz.

e^(-xy)-x^2*y+e^z=z,令F(x,y,z)=e^(-xy)-x^2*y+e^z-z=0分别对F取x,y,z的偏导数,可得əF/əx=e^(-xy)*(-y)-2xy