求曲线x=sint y=cost 在t=π 4 处的切线方和与法线方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:38:16
x²+y²=25sin²tz²=25cos²t所以x²+y²+z²=25
dx/dt=(e^t)sint+(e^t)cost=(e^t)(sint+cost)dy/dt=(e^t)cost-(e^t)sint=(e^t)(cost-sint)dy/dx=(dy/dt)/(d
x'=-sint,y'=cost,z'=(sect)的平方(0,1,1)对应的t=π/2,T=(-1,0,1)切线方程:(x-0)/(-1)=(y-1)/0=(z-1)/1发平面:-x-(z-1)=0
∵x'(π/4)=-√2/2,y'(π/4)=√2/2,z'(π/4)=2∴所求切线方程是(x-√2/2)/(-√2/2)=(y-√2/2)/(√2/2)=(z-π/2)/(2)所求法平面方程是(-√
这个图形您会画吗?如果能画出图形就能更好的解决答案,这个图形很有代表性,公式就是微元分析法就是ds=2π(2a-y)根号下(1+y‘)dx;然后积分区域就是(0,2πa),将x=a(t-sint),以
因为dx/dt=1+costdy/dt=1-sint所以dy/dx=[dy/dt]/[dx/dt]=(1-sint)/(1+cost)又x'(t)=1+cost>=0,x(t)单调不减于是得x=t+1
=(1+e^t)/(2-sint)不通,看书.
由对称性,S=4∫(0→a)ydx=4∫(π/2→0)a(sint)^3d[a(cost)^3]=12a^2×∫(0→π/2)(sint)^4×(cost)^2dt=12a^2×∫(0→π/2)[(s
首先求导数y'=1/(2根号x)所以切线斜率为1/2根号4=1/4故法线斜率为-4所以切线方程为y-2=1/4(x-4)法线方程为:y-2=-4(x-4)你自己在化简一下就行了
(I)曲线C1的参数方程式x=4+5costy=5+5sint(t为参数),得(x-4)^2+(y-5)^2=25即为圆C1的普通方程,即x^2+y^2-8x-10y+16=0.将x=ρcosθ,y=
x^2=9sin^ty^2=16sin^tz^2=25cos^t三式相加可得一般方程x^2+y^2+z^2=25
x=a(cost+tsint),y=a(sint-tcost)L=∫√(dx²+dy²)dx=atcostdtdy=atsintdt=∫at√((cos²t+sin&su
dx/dt=coste^t+sinte^tdy/dt=-sinte^t+coste^t所以dy/dx=(dy/dt)/(dx/dt)=(-sint+cost)/(cost+sint)当t=0时,dy/
x=sint-costy=sint+cost则:x+y=2sintx-y=-2cost所以:(x+y)^2+(x-y)^2=2再问:这个不像圆的方程啊再答:这个是圆的方程。(x+y)^2+(x-y)^
先化为直角坐标方程:(x-4)/5=cost、(y-5)/5=sint=>(x-4)^2/5^2=cos^2t、(y-5)^2/5^2=sin^2t=>(x-4)^2/5^2+(y-5)^2/5^2=
y'=3x^2-3y"=6xy'=0,x=±1x1,则y'>0,y是增函数-1
绕x轴:∫0-∞(pi*(e^x)^2)*dx=(pi/2)*[e^2x]0-∞=pi/2绕y轴:(与y轴交点(0,1))∫10(pi*(lny)^2)*dy=pi*[y*(lny)^2-2y(lny
直接求导,根据导数也就是微商的定义y'=dy/dx=(dy/dt)/(dx/dt)=-sint/cost=-tgt当t=Pi/4时,y'=-tgt=-1,并且曲线过点(sqrt2/2,sqrt2/2)
x,y随t增减趋势,大致画出图像是从A(1,0) 沿着逆时针到B(1,-2π)的一段曲线..设原题目中P=y+ye^x,Q=x+e^x因为Q'x=P'y,所以原积分与路径无关