求曲线y等于2x分一在点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 13:20:34
求曲线y等于2x分一在点
已知曲线过点(2,1),且曲线上任一点(x,y)处 的切线斜率等于-1-y/x,求此曲线方程

是(-1-y)/x吗?在任一点(x,y)的切线斜率就是在该点的导数值,dy/dx=-(1+y)/x,解该微分方程,dy/(1+y)=-dx/x,两边积分,∫d(1+y)/(1+y)=-∫dx/xln(

求一曲线方程,这曲线通过原点,并且它在点(x,y)处的切线斜率等于x+y

根据题意有:y'=x+y,y(0)=0即y'-y=x特征根为1,y1=ce^x设y*=ax+b,y*'=a,代入方程得:a-ax-b=x,得:-a=1,a-b=0故a=-1,b=-1,y*=-x-1故

求一曲线方程,曲线过原点,在点(x,y)处的切线斜率为2x+y

设这个曲线为y=f(x),有f(0)=0(因过原点)且y'=2x+y,即y'-y=2x这是一个可以用公式法解的方程解得y=Ce^x+2x+2令x=0有0=C+2,所以C=-2所以曲线方程为y=-2e^

求一曲线方程,这曲线通过原点,并且它在点(x,y)处的切线斜率等于.

这种题目实际上是由它在点(x,y)处的切线斜率等于.求微分方程得到到曲线方程的一般解析式,而后代入(0,0)即可得到曲线方程.具体解题方法因题目不清无法解析

求一曲线方程,该曲线通过原点,并且它在点(x,y)处的切线斜率等于2x+y

曲线的切线斜率为dy/dxdy/dx=2x+y,就是y'-y=2x首先考虑特解,显然y=-2x-2是方程的一个特解而对于y'-y=0,可以知道dy/y=dxlny=x+Cy=Ce^x所以方程通解为Ce

求一曲线的方程,这曲线过(0,0),且它在点(x,y)处的切线斜率等于2x+y,

设y=f(x),f(0)=0f'(x)=2x+f(x)设u=f(x)+2x,du/dx=f'(x)+2du/dx-2=f'(x)=2x+(u-2x)=udu/(u+2)=dxln(u+2)=x+cu=

求一曲线,这曲线过点(0,1),且它在点(x,y)处的切线斜率等于x-y.

y'=x-yu=x-yy=x-uy'=1-u'1-u'=uu'=1-udu/dx=1-udu/(u-1)=-dxln(u-1)=-x+C0u-1=Ce^(-x)C=e^C0u=Ce^(-x)+1y=x

一曲线通过原点,其在任意点处的切线斜率等于2x-y,求曲线方程

y'=2x-yy'+y=2x对应齐次方程的特征多项式为:r+1=0r=-1设特解为:y*=ax+b代入原方程后得:a=2b=-2故通解为:y=ce^(-x)+2x-2将y(0)=0代入得:c=2故曲线

一曲线过原点,且在任一点(x、y)的切线的斜率等于2x,求该曲线方程

切线的斜率等于2x在任一点(x、y)的切线的斜率等于2x,即导数是2x,则原函数是f(x)=x^2+C过原点,则有f(0)=0+C=0,C=0故函数是f(x)=x^2则y'=2x所以y=x²

求一曲线的方程,这曲线通过原点,并且它在点(x,y)处的切线斜率等于2x+y

由题意,得y'=2x+yy(0)=0j解y‘=2x+yy’-y=2xy=e^∫dx[∫2xe^(-∫dx)dx+c]=e^x(-2xe^(-x)-2e^(-x)+c)代入x=0,y=0,得0=-2+c

求一曲线方程,这曲线过原点,并且它在点(x,y)出的切线斜率等于2x+y.

设曲线为:y=f(x)并且f(0)=0(过原点)f'(x)=y'=2x+y(切线斜率等于该点的一阶导数)y'-y=2x(一阶线性微分方程)y=C*e^(-∫-1dx)+e^(-∫-1dx)*∫2x*e

一曲线过原点且在点(x,y)处的切线斜率为2x+y,求该曲线方程是什么?

设这个曲线为y=f(x),有f(0)=0(因过原点)且y'=2x+y,即y'-y=2x这是一个可以用公式法解的方程解得y=Ce^x+2x+2令x=0有0=C+2,所以C=-2所以曲线方程为y=-2e^

求一曲线方程.该曲线通过原点,并且它在点(x,y)处的斜率等于2x+y.最好附上简易的过程.

曲线的切线斜率为dy/dxdy/dx=2x+y,就是y'-y=2x首先考虑特解,显然y=-2x-2是方程的一个特解而对于y'-y=0,可以知道dy/y=dxlny=x+Cy=Ce^x所以方程通解为Ce

曲线y=根号(4-x^2),P点在曲线上运动,求y/(x+5)的范围

曲线式圆心在(0,0)半径为2的上半圆周设y/(x+5)=k即y=k(x+5)这是经过(5,0)的直线,本题相当与求与曲线相交的直线的斜率范围.0

求一直线的方程,该曲线通过原点,且它在点(x,y)处的切线斜率等于2x+y

依题意,即有微分方程:y'=2x+y,y(0)=0得y'-y=2x特征根为r=1设特解y*=ax+b,代入方程得:a-ax-b=2x,对比系数:-a=2,a-b=0得a=-2,b=-2故通解为y=Ce

求曲线Y的三次方+Y的平方等于2X在点(1,1)处的切线方程

y^3+y^2=2x(y^3+y^2)/2=X求导X'=(3/2)*Y^2+yY=1X'=5/2因为所求为Y关于X斜率要求X关于Y斜率即Y'=2/5Y=(2/5)X+3/5

动点p(x,y)在曲线九分之x平方加四分之y平方等于1上变化,求3x+2y最大值和最小值

懂点在椭圆上运动根据椭圆的参数方程,这个点可以写成(acosα,bsinα)这个椭圆中,a=3,b=2所以这个点是(3cosα,2sinα)所以3x+2y=f(α)=9cosα+4sinα=√97si

求一曲线,且有如下性质:曲线上任一点的切线在x,y轴上的截距之和恰好等于该点的斜率.

如果是切线斜率的话,貌似就是一个圆,只要圆心在原点的正圆.还有斜率好像是针对直线的吧,该点斜率?是原点至点斜率,还是切线斜率?再问:这是大学数学专业常微分里面的一道题。。。再答:专业的?常微分?还真不

求一曲线方程,这一曲线过原点,并且它在点(x,y)处的斜率等于2x+y 特解...

思路:(x,y)处的斜率等于2x+y,故y'=2x+y,利用常数变异法解得微分方程的通解为:y=Ce^x+2(x+1)曲线过原点,代入(0,0)得C=2,从而特解为y=2e^x+2(x+1)注:利用常