求极限lim定积分(0,x)(arctant)^2dt 根号1 x^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:45:12
x(n)=[sin(π/n)/(n+1)+sin(2π/n)/(n+1/2)+...+sin(π)/(n+1/n)],1/(n+1)*[sin(π/n+sin(2π/n)+...+sin(π)]右侧1
=lim[cosx√sinx]/[(sec)^2√tanx=lim√[sinx/tanx]=1
详细解法如图,如看不见图,可以百度HI我再问:书上的标准答案吗??再答:不是,是别人做的,答案是对的
a不为2k*pi时,极限为无穷大.a是2k*pi时,原式=e^x/x*(cosx-cosa)=e^x/x*(cosx-1)等价无穷小代换得极限为0.你写的不清楚,我尽量猜测你的真实意思,应该没错,不过
∵0≤lim∫x^n*√(1+x^2)dx≤lim∫2x^ndx=lim2/(n+1)=0∴lim∫x^n*√(1+x^2)dx=0
再答:再答:��֪ͨ�����߶���Ļش�������ۣ����Ե�
x^sinxx是不能小于0的吧.不然会出现复数的实数次幂(在实数范围内没有意义的形式)x>0时,可以取对数ln(x^sinx)=sinxlnx极限与xlnx相同【注意到sinx趋向0(可用阶等价的x替
用罗贝塔法则,这个是变上限积分求导分子求导[∫√tantdt(sinx0)]'=cosx乘以√tan(sinx)分母求导[∫√sintdt(0tanx)]'=-1/(cosx)^2乘以√sin(tan
x和sinx是等价无穷小,非要过程的话,用洛必达吧,如下:lim2x/sinx=2*limx/sinx=2*lim1/cosx=2*1=2
∫dx/(n+x)
楼主请看图 图一会就好 点击放大备注:当x->无穷大时,lim arctanx=π/2
答案是4/e详解如图:
原式等于lim(n->oo)c^n/[1+c^(2n)]=0c属于(0,1)再问:你这回答和没说一个样……不要逗比再答:根据积分中值定理积分部分等于(1-0)*【c^n/[1+c^(2n)]】c属于(
再问:���ʣ�����
将y带入方程组得dy/dx+y=e^(-x)e^xf(x)-e^(-x)积分(0,x)e^tf(t)dt+e^(-x)积分(0,x)e^tf(t)dt=f(x)满足,得证.lim(x->+oo)y(x
这个积分应该不好求..所以转头想下别的办法.由积分中值定理得∫(0.1)x^n√(根号)1+x^2dx=ε^n√1+ε^2则极限转变为lim(n→∞)ε^n√1+ε^2=0(ε属于[01]).
x∈[0,π/4],sinx∈[0,√2/2]0lim(n->∞)(√2/2)^n=0由迫敛准则(夹逼准则),原式=0再问:那请问如果利用定积分中值定理,怎么求解x要分正负无穷吗再答:∫[0,π/4]
第一题因为x~arctanx(x->0),所以把分母换成x²,然后用洛比达法则上下求导得该极限=lim2xcos(x²)²/2x=1(x->0)第二题被积函数在[-1,0
第一题是∞/∞型、其余三题都是0/0型、都用洛必达法则、分子和分母分别对x求导在求极限时、尤其是x趋向0时、可用等价无穷小替换、例如第三题的sinx ~ x当x→0洛必达法则:若l