求椭圆x^2 9 y^2 16=1上的点到l:x y-7=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:27:49
求椭圆x^2 9 y^2 16=1上的点到l:x y-7=0
椭圆与直线X+Y=1想交于A、B,AB=2√2,焦点在直线上,求椭圆方程

分两种情况讨论:焦点在x轴和y轴焦点在x轴:设椭圆方程,根据焦点在直线上可知c=1,a^2=b^2+c^2(1)直线与椭圆相交交点的距离公式是√(1+1/k^2)[(y1+y2)^2-4y1y2]联立

点P(x,y)在椭圆x²/4+y²=1上,1)求2x+3y的最大值;2)求(x-1)²+y

设P(2cosa,sina)2x+3y=4cosa+3sina=5sin(a+b),其中tanb=3/4,利用辅助角公式所以当sin(a+b)=1的时候,2x+3y有最大值5(x-1)²+y

椭圆方程x^2/100+y^2/60=1,点C在椭圆上,且│cf1│=4,求三角形ABC的面积

假设F1是左焦点,B1,B2是短轴的两端点C(x0,y0)x^2/100+y^2/60=1a=10b=2√15c=2√10e=√10/5由焦半径公式|CF1|=ex0+a=4x0=-3√10三角形cb

已知P(x,y)是椭圆x²/100+y²/36=1上的点,求3x+4y 的最大值与最小值

证法一:依椭圆参数方程,可设x=10cosθ,y=6sinθ.∴3x+4y=30cosθ+24sinθ=6√41sin(θ+φ)(tanφ=5/4)∵sin(θ+φ)∈[-1,1],故所求最大值为:6

已知P(x,y)是椭圆x^2/100+y^2/36=1上的点,求3X+4y的最大值与最小值

参数方程x=10cosθy=6sinθ3x+4y=30cosθ+24sinθ=6(5cosθ+4sinθ)=6√41sin(θ+α)最大值为6√41,最小值为-6√41.再问:这一步6(5cosθ+4

已知椭圆x^2/25+y^2/9=1 P是椭圆上一点

1、就是先设所求点位(x,y),然后找出x,y与已知方程对应曲线点A的关系(将其上的点用x.y表示),然后将对应点A的x,y表示的坐标带入方程化简后x,y的函数关系就是所求点的轨迹可设M(x,y),则

已知P是椭圆x^2/25+y^2/9=1上一点,F1F2为椭圆的焦点,求|PF1|X|PF2|的最大值

由椭圆的定义|PF1|+|PF2|=2a=10由均值不等式a^2+b^2≥2aba^2+2ab+b^2≥4ab(a+b)^2≥4ab则(|PF1|+|PF2|)^2≥4|PF1|*|PF2||PF1|

椭圆最大距离已知:椭圆方程为:x^2/4+y^2=1,圆方程为x^2+(y-4)^2=4,求椭圆上的点到圆上的点的最大距

以圆的圆心为圆心,设一半径为r的圆,恰好与椭圆相切,那么椭圆上该切点到圆心距离最大或最小,再加上原来圆的半径,就可以算出最大距离联立x^2/4+y^2=1x^2+(y-4)^2=r^2消去x,得3y^

数学解析几何已知椭圆x^/9+y^/16=1,过椭圆中心的直线l交椭圆于AB两点,与x轴成60度,P在椭圆上,求三角形P

只需让ab直线为三角形的底,让高最大,求,椭圆上的p点到直线ab最大.设p(x,y)直线l为y=根号3x+b点p在椭圆上也在直线l上联立判别式等于0解出b所以b就是高

已知椭圆X²/16+Y²/9=1的左右焦点分别为F1 F2,点P在椭圆上,若角F1PF2=90°,求

已知椭圆x^2/16+y^2/9=1可得a=4,b=3,c=√7则由余弦定理可得:|F1F2|^2=|PF1|^2+|PF2|^2-2|PF1||PF2|COS∠F1PF2=|PF1|^2+|PF2|

已知椭圆x2/4+y2/3=1和直线y=4x+m,如果椭圆上总存在两点关于直线对称,求m的范围

设椭圆上两点A(x1,y1)、B(x2,y2)关于直线y=4x+m对称,AB中点为M(x0,y0).则3x1^2+4y1^2=123x2^2+4y2^2=12相减得到:3(x1+x2)(x1-x2)+

解析几何椭圆问题:椭圆方程X^2+1/2Y^2=1 直线y=x+b,椭圆上存在两点关于直线对称,求b的取值范围

设椭圆上存在两点(x1,y1),(x2,y2)则将以上两点分别代入椭圆方程中,两个方程作差(点差法)得到{(X1+X2)(X1-X2)}/{(Y1+Y2)(Y1-Y2)}=-1/2因为(X1-X2)/

椭圆C,求圆x^2+(y-2)^2=1/4上的点到椭圆C上的距离的最大值与最小值.

椭圆A=2,C=A*E=根号3,B=1圆半径1/2,原点(0,1/2)距离最大值为3/2,最小值为1/2

P(x,y)是椭圆上x^2/4+y=1上的点,F1,F2是椭圆的左右焦点.求x+y的最值,xy的最值,y-2/x+3的最

设x=2cosθ,y=sinθ,则x+y=2cosθ+sinθ=√5sin(θ+φ),所以最大值是√5,最小值是-√5xy=2sinθcosθ=sin2θ,所以最大值是1,最小值是-1第三题,(y-2

已知P(x,y)是椭圆x^2/25+y^2/16=1上的一个动点,求4x/5+3Y/4的最大值

令x=5cosay²/16=1-cos²a=sin²a所以y=4sina所以4x/5+3y/4=4cosa+3sina=5sin(a+z)其中tanz=4/3所以最大值=

已知P(x,y)在椭圆x^2/4+y^2/9=1上,求u=2x-y的最大值

用参数方程x=2cospy=3sinp则u=-3sinp+4cosp=-(3sinp-4cosp)=-√(3²+4²)sin(p-q)=-5sin(p-q)其中tanq=4/3所以

已知椭圆x²/25+y²/9=1的右焦点为F,在椭圆上求一点P,使得/PF/=4

两点即为线:y=kx+bP:(x1,y1)四个未知数,四个方程解开即可.方程思想的应用.只提供思路,自己做吧,解析几何很重要的是:方程思想.

已知P(x,y)是椭圆x^2/144+y^2/25=1上的点,求x+y的取值范围.

x^2/144+y^2/25=125x^2+144y^2=3600x+y=t,y=t-x(25+144)x^2-288tx+144t^2-3600=0判别式(-288t)^2-4*(25+144)*(

P(x,y)是椭圆x∧2/16+y∧2/9=1上一点,求y/x的取值范围?是否可以设y/x=t,然后和椭圆的方程联立求范

当然可以,除此之外还有两种简单方法.直观判断  连接OP,看OP的斜率  一看就知道是正无穷到负无穷三角代换 x=4cosa y=3sina

已知椭圆X²/16+Y²/4=1,求该椭圆上的点到直线X+2Y-根号2=0的最大距离

设X+2Y+b=0是与X+2Y-根号2=0平行的椭圆的切线把x=-b-2y代入X²/16+Y²/4=1得:(-b-2y)^2+4y^2=16即:8y^2+4by+b^2-16=0判