求椭圆x² 3 y²=1上的点到直线x-y 6=0的距离
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:16:48
为了用最简单的方法做出数学才是数学的最高境界啊;我动手了此题可以等效为过椭圆的点做与该直线平行的直线;可以证明当该平行线与椭圆相切的时候距离最小;因此设切点为(x,y);对椭圆方程两边求x的偏导得到x
令x=4cosay^2/9=1-cos²a=sin²a所以y=3sina2x+3y=9sina+4cosa=√(9²+4²)sin(a-b)=√97sin(a-
设P(2cosa,sina)2x+3y=4cosa+3sina=5sin(a+b),其中tanb=3/4,利用辅助角公式所以当sin(a+b)=1的时候,2x+3y有最大值5(x-1)²+y
a^2=4,b^2=3,c^2=1,左焦点为(-1,0),取左焦点为F',则PF+PF'=2a=4,PF=2a-PF‘,所以PA+PF=PA+2a-PF'=2a+(PA-PF'),对于三角形PAF'而
本题可以考虑用函数方法求解,为减少计算,不妨采用椭圆的参数方程设点易知a^2=4,b^2=3,则c=1,于是焦点F坐标为(1,0)令M(2cosα,√3sinα),这里α为离心角,取值范围为[0,2π
证法一:依椭圆参数方程,可设x=10cosθ,y=6sinθ.∴3x+4y=30cosθ+24sinθ=6√41sin(θ+φ)(tanφ=5/4)∵sin(θ+φ)∈[-1,1],故所求最大值为:6
参数方程x=10cosθy=6sinθ3x+4y=30cosθ+24sinθ=6(5cosθ+4sinθ)=6√41sin(θ+α)最大值为6√41,最小值为-6√41.再问:这一步6(5cosθ+4
你好~这是一道基础题~考察椭圆的定义:到2焦点为定值2a(2a>|F1F2|)的点的集合.三角形ABC的周长可以分解为2个部分:(设焦点A,F)一个是|AB|+|BF|=2a,另一个是|AC|+|CF
设3x+4y=k,x2/16+y2/9=1直线与椭圆有交点,联列,判别式大于等于0,得k的范围.
可以设这点的坐标为(√2COSA,SINA),则:点到直线的距离为D=│√2COSA-SINA+2√3│/√2=│√3SIN(A-B)+2√3│/√2,SINB=√6/3,COSB=√3/3则Dmin
设椭圆上两点A(x1,y1)、B(x2,y2)关于直线y=4x+m对称,AB中点为M(x0,y0).则3x1^2+4y1^2=123x2^2+4y2^2=12相减得到:3(x1+x2)(x1-x2)+
过P向准线做垂线,焦点为E.设PF到准线PE得距离为d则PF/d=e=1/2即PF=d/2PF+PA最小就是PE+PA最小当PAE三点共线时最小PA+PF=PA+PE/2此时p(2根号6,1)PA=(
设中点为(X,Y),K(X1,Y1),则2X=X1-2,2Y=Y1,则X1=2X+2,Y1=2Y,将X1,Y1,带入椭圆方程中,就得XY的关系就为轨迹方程
设x=2cosθ,y=sinθ,则x+y=2cosθ+sinθ=√5sin(θ+φ),所以最大值是√5,最小值是-√5xy=2sinθcosθ=sin2θ,所以最大值是1,最小值是-1第三题,(y-2
可以设这点的坐标为(√2COSA,SINA),则:点到直线的距离为D=│√2COSA-SINA+2√3│/√2=│√3SIN(A-B)+2√3│/√2,SINB=√6/3,COSB=√3/3则Dmin
令x=5cosay²/16=1-cos²a=sin²a所以y=4sina所以4x/5+3y/4=4cosa+3sina=5sin(a+z)其中tanz=4/3所以最大值=
设椭圆方程为x^2/a^2+y^2/b^2=1椭圆被直线x+y+1=0截得的弦A(x1,y1)B(x2,y2)x1^2/a^2+y1^2/b^2=1x2^2/a^2+y2^2/b^2=1相减(x1-x
当然可以,除此之外还有两种简单方法.直观判断 连接OP,看OP的斜率 一看就知道是正无穷到负无穷三角代换 x=4cosa y=3sina
设X+2Y+b=0是与X+2Y-根号2=0平行的椭圆的切线把x=-b-2y代入X²/16+Y²/4=1得:(-b-2y)^2+4y^2=16即:8y^2+4by+b^2-16=0判