求椭圆面x^2 y^2 z^2=1平行于平面x-y 2z=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:18:14
求椭圆面x^2 y^2 z^2=1平行于平面x-y 2z=0
求锥面z= √x^2+y^ 2与半球面 z= √ 1-x^2-y^ 2所围成的立体的体积

两个办法:一个是用积分,一个是用立体角①用积分用球面坐标,设半径r与z轴夹角为φ,r在XOY平面上投影与x轴夹角为θ则积分区域为:0≤r≤1,0≤φ≤π/4,0≤θ≤2π两曲面所围成立体体积为V=∫d

已知三平面:2x+y+z-3=0,x-y+2z-3=0,x+z-3=0,求直截面三角形的面积

仔细想了想,应该很简单,先解析一下解析:分析第三个平面可以发现,它是一个平行于y轴的平面,而且点(0,0,3)和点(3,0,0)都在面zox和面x+z-3=0上,而面zox又与x+z-3=0垂直,那么

∮τ (y-z)dx+(z-x)dy+(x-y)dz,τ为椭圆x^2+y^2=a^2,x/a+y/b=1

用斯托克斯公式.P=y-z;Q=z-x;R=x-y;原式=二重积分(-1-1)dydz+(-1-1)dzdx+(-1-1)dxdy=-2二重积分(1dydz+1dzdx+1dxdy)=-2*(0+ab

求平面z=c(c>0)与椭圆抛物面z=1/2(x^2/a^2+y^2/b^2)所围立体的体积

令x=arcost,y=brsint,得V=∫∫∫dv=∫dt∫abrdr∫dz=∫dt∫abr(c-r^2/2)dr=-2πab∫(c-r^2/2)d(c-r^2/2)=-πab[(c-r^2/2)

跪求高数大神 抛物面z=x^2+y^2被平面x+y++z=1截成一个椭圆,求该椭圆的长半轴和短半轴(用拉格朗日乘子)

我做出来是长半轴为√(3(2+√3)),短半轴是√(3(2-√3)),用拉格朗日乘数法做的.如果你觉得答案靠谱就追问,我再把过程贴上去.再问:�鷳��дһ�¹���лл再答:����֮���ֵ�һ�

求抛物面壳z=1/2(x^2+y^2)的质量,面密度为u=z,(0

答:s=∫∫u(x,y,z)sqrt(1+(dz/dx)^2+(dz/dy)^2)dxdy=∫∫1/2(x^2+y^2)sqrt(1+x^2+y^2)dxdy=∫∫1/2r^2sqrt(1+r^2)r

求平面x+2y+z=0截圆柱x^2+y^2=1所得椭圆的长半轴和短半轴之长

x2;+y2;=1被平面x+y+z=1截成一个椭圆,求该椭圆的长半轴与短半轴长.平面x+y+z-1=0与xoy平面的夹角φ的余弦cosφ=1/√3.故所

已知x::y:z=3:4:5,(1)求x+y分之z的值;(2)若x+y+z=6,求x,y,z.

因为x:y:z=3:4:5所以设x=3k,y=4k,z=5k(k≠0)(1)z/(x+y)=5k/(3k+4k)=5k/7k=5/7(2)x+y+z=63k+4k+5k=612k=6k=1/2x=3k

求第二类曲线积分∫ (y-z)dx+(z-x)dy+(x-y)dz,L为椭圆x^2+y^2=1,x+y=1,从x轴正向看

题目有点问题,x²+y²=1与x+y=1围成的区域不是封闭区域.题中也没有规限z的范围再问:是xz=1打错了再答:

求平面x+2y-2z+6=0和平面4x-y+8z-8=0的夹角的平分面方程.

角平分面必过平面1:x+2y-2z+6=0与平面2:4x-y+8z-8=0的交线可设角平分面的方程为λ(x+2y-2z+6)+4x-y+8z-8=(λ+4)x+(2λ-1)y+(8-2λ)z+(6λ-

已知椭圆x^2/4 +y^2 =1,设P(x,y)是椭圆上一点,求z=x+2y的最大值及相应的P点坐标

首先做出图来看一下,由于此椭圆的对称性,可知,当x,y均大于0的时候,暨P点在第一象限的时候,z可以去到最大值,同样z为正数,z最大时,z平方也最大,z平方=x平方+4乘以y的平方+4xy.由椭圆式子

1.已知x,y,z满足2│x-y│+(根号2y-z)+z平方-z+(1/4)=0,求x,y,z值.

1.z²-z+1/4=(z-1/2)².绝对值、根号、平方数都是非负的,而相加为0.所以都为0.即x=y,2y=z,z=1/2.所以x=y=1/4,z=1/2.2.2002x200

如果,根号x-3+| y-2 |+z^2=2z-1 求 (x+z)^y

根号x-3+|y-2|+z^2=2z-1根号x-3+|y-2|+(z^2-2z+1)=0根号x-3+|y-2|+(z-1)^2=0由于数值开根号,绝对值和平方数均为大于等于0的数则上式要成立只有X-3

求椭球面 x^2+2y^2+z^2=1 上平行于平面 x-y+2z=0 的切平面方程

设f(x,y,z)=x^2+2y^2+z^2-1,偏导数:f'x=2x,f'y=4y,f'z=2z,椭球面法向量:n=(2x,4y,2x)

求椭圆面x^2/3+y^2/12+z^2/27=1上点M(1,2,3)处的切平面方程和法线方程

∵Z=2x^2+y^2∴Zx'│m=4,Zy'=-2∴切平面的法向量是(4,-2,-1)故所求切平面方程是4(x-1)-2(y+1)-(z-3)=0,即4x-2y-z=3所求法线方程是(x-1)/4=

抛物面z=x*2+y*2被平面x+y+z=1截得一椭圆,求原点到此椭圆的最长距离和最短距离

x+y+x^2+y^2=1(x+1/2)^2+(y+1/2)^2=1/2此图形表示以(-1/2,-1/2)为圆心,半径为根2/2的圆.它经过原点.所以最短距离为0.最长距离为2r=根2

旋转椭球面x^2+y^2+4z^2=9被平面x+2y+5z=0截得椭圆,求该椭圆的长半轴与短半轴

首先确定椭圆的中心,因为椭球面的中心在原点O,平面也过原点O,所以椭圆的中心也在原点O根据题意,只要求出椭圆上到中心O的距离d^2=x^2+y^2+z^2的最大值和最小值即可.根据条件极值的求法,设P

求椭球面x²+2y+z²=1上平行于平面x-y+2z=0的切平面方程,

x²+2y+z²=1F(x,y,z)=x²+2y+z²-1Fx=2xFy=2Fz=2z设切点为(x0,y0,z0)则2x0/1=2/(-1)=2z0/2所以x0

方程z=x^2+y^2表示的二次曲面是什么?(A.椭圆面 B.柱面 C.圆锥面 D.抛物面)还有z^2=x^2+y^2呢

柱面(cylinder)动直线沿着一条定曲线平行移动所形成的曲面.动直线称为柱面的直母线,定曲线称为柱面的准线.当准线是圆时所得柱面称为圆柱面;特别地,如果直母线垂直于圆所在平面时,所得柱面称为直圆柱

求平面x=2与椭球面x^2/16+y^2/12+z^2/4=1相交所得椭圆的半轴与顶点

把x=2代入椭球面方程得1/4+y^2/12+z^2/4=1,y^2/12+z^2/4=3/4,两边都乘以4/3,得y^2/9+z^2/3=1,∴椭圆的长半轴=3,短半轴=√3,顶点为(2,土3,0)