求由z=y^2,x^2 y^2=1,z=0所围成的立体的体积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 15:15:19
x=4y/3y=yz=2y/5所以,x:y:z=4/3:1:2/5=20:15:6
x+y-z=6y+z-x=2z+x-y=0三式相加得x+y+z=8-得2z=2z=1-得2x=6x=3-得2y=8y=4x=3y=4z=1
x²+y³-xyz=0,z=(x²+y³)/(xy)=x/y+y²/x;故z/x=1/y+y²/x²z/y=x/y²+y
z=x/ln(y/2)z′(x)=1/ln(y/2)z′(y)=-x/ln(y/2)^2*(1/(y/2))*1/2=-2x/(y*ln(y/2)^2)
对方程e^(-xy)+2z-e^z=2两边微分,有:e^(-xy)*d(-xy)+2*dz-e^z*dz=0-e^(-xy)*(x*dy+y*dx)+2*dz-e^z*dz=0移项,得:(e^z-2)
方程x^2-z^2+lny-lnz=0两端对x求导得2x-2zz'x-z'x/z=0z'x=2x/(2z+1/z)两端对y求导得-2zz'y+1/y-z'y/z=0z'y=1/[y(2z+1/z)]因
x+y+z-6=02x+3y-z-12=02x-y-z=0组成方程组再解x=2y=3z=1
两端对x求偏导得:-ye^(-xy)-2(z/x)+(z/x)e^z=0,所以,z/x=ye^(-xy)/(e^z-2)两端对y求偏导得:-xe^(-xy)-2(z/y)+(z/y)e^z=0,所以,
1、隐函数对x求导得1+az/ax+yz+xy*az/ax=0,故az/ax=-(1+yz)/(1+xy);F对x求导得aF/ax=e^x*y*z^2+e^x*y*2z*az/ax;当x=0,y=1时
(x+y+z)²+(x-y-z)(x-y+z)-2·z(x+y)=(x+y)²+2z(x+y)+z²+(x-y)²-z²-2z(x+y)=(x+y)&
y^3z^2-x^2+xyz-5=0等式两边同时对x求导:∂z/∂x=(2x-yz)/(2zy^3+xy)等式两边同时对y求导:∂z/∂y=-(3y
根号x-3+|y-2|+z^2=2z-1根号x-3+|y-2|+(z^2-2z+1)=0根号x-3+|y-2|+(z-1)^2=0由于数值开根号,绝对值和平方数均为大于等于0的数则上式要成立只有X-3
令F(x,y,z(x,y))=x^2+y^2+z^2-xyz-2则dz/dx=-Fx/Fz=-(2x-yz)/(2z-xy)2)令F(x,y,z(x,y))=x+siny+yz-xyz则dz/dx=-
x+2y+z=e^(x-y-z)两边对x求偏导注意到z=z(x,y)1+z'=e^(x-y-z)*(1-z')...(1)再对x求偏导z"=e^(x-y-z)(1-z')^2-z"e^(x-y-z).
your answer here
两边求微分的2xdx+2zdz=2e^zdy+2ye^zdz解得dz=(2e^zdy-2xdx)/(2z-2ye^z)=(e^zdy-xdx)/(z-ye^z)
首先du/dx=z+x*dz/dx而Z=Z(x,y)由方程x²z+2y²z²+y=0确定,对x求导得到2xz+x²*dz/dx+2y²*2z*dz/d
3元一次方程,好像是初一的问题哦.根据前面两个等式可以得出x=3zy=z(平方)/32x+3y+4z=2*(3z)+3*(z方/3)+4z现在变成了一元二次方程,你应该会解吧.
x:y:z=20:15:63x=4y,x:y=4:3=20:152y=5z,y:z=5:2=15:6x:y:z=20:15:6