求由圆x2 (y-5)2=16绕x轴旋转

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:30:48
求由圆x2 (y-5)2=16绕x轴旋转
已知圆x2+y2-2x-2y+1=0求x2+y2的最大值

(x-1)^2+(y-1)^2=1令x-1=sinay-1=cosa则x=1+sina,y=1+cosax^2+y^2=1+2sina+(sina)^2+1+2cosa+(cosa)^2=3+2(si

求y=(根号x2+2x+5)+根号(x2+6x+25)的值域

y=根号(x2+2x+1+4)+根号(x2+6x+9+16)=根号[(x+1)^2+4]+根号[(x+3)^2+16],(“^2”表示平方)设坐标系有一点(X,0),X可以任意移动(定义域是R)Y可以

设函数Y=f(x)由x2+3y4+x+2y=1所确定,求dy/dx

把原式两边对x求导得:x^2+12y^3*dy/dx+1+2dy/dx=0合并同类项移项得:dy/dx=-(1+2x)/(12y^3+2)

已知x,y满足x2+y2-6x-2y+5=0,求x2+y2的最大值

x2+y2-6x-2y+5=0(x-3)^2+(y-1)^2=5表示一个圆,圆心坐标(3,1)x^2+y^2表示圆上一点(x,y)到原点的距离的平方.画图就看出,最大距离是:圆心到原点的距离+半径.即

已知X>=2, 求函数y=x2+5/根号x2+2的最小值.

设t=√x^2+2x>=2∴t>=√6y=t+3/t由对勾函数的性质,t>=√3时单调递增所以当t=√6时,函数取最小值最小值为(3√6)/2再问:好难哦,你到底怎样想的?再答:关键是要去掉根号,去掉

求由曲线y=x2与y=2-x2所围成图形的面积为______.

∵曲线y=x2和曲线y=2-x2所的交点为(1,1)和(-1,1)∴曲线y=x2和曲线y=2-x2所围图形的面积为S=2∫10[(2−x2)−x2]=2∫10(2−2x2)=2(2x-23x3)|10

求由两条曲线y=-x2,4y=-x2及直线y=-1所围成图形的面积,并画出简图.

由图形的对称性知,所求图形面积为位于y轴右侧图形面积的2倍.由y=−x2y=−1得C(1,-1).同理得D(2,-1).∴所求图形的面积S=2{∫10[−x24−(−x2)]dx+∫21[−x24−(

若x2+4y2+2x-4y+2=0求5x2+16y2的算术平方根

x²+4y²+2x-4y+2=0(x²+2x+1)+(4y²-4y+1)=0(x+1)²+(2y-1)²=0x=-1,y=1/25x

求由曲线x2+y2=|x|+|y|围城的图形的面积

由于图形是对称的,只考虑第一象限内的部分即可.此时绝对值号可以直接去掉x^2 + y^2 = x + y所以x^2 + 

求由曲线y=1 2x2与x2+y2=8所围成的图形的面积

题目不清楚是不是y=12x^2把圆的方程化为y=根号下(8-x^2)这时只包括y正轴区域的半圆和y=12x^2进行积分求出两曲线之下的面积再用半圆面积减之求得围城面积

由p点(0,5)作圆x2+y2+4x-2y-5=0的切线 求切线所在直线的方程及切线长

设切线方程是y=kx+5圆方程是(x+2)^2+(y-1)^2=10,即圆心(-2,1)到切线的距离等于半径,则有d=|2k+1-5|/根号(k^2+1)=根号10即有(2k-4)^2=10(k^2+

求由抛物线y=x2和直线y=x+2所围城的平面图形的面积

如图所示:所围城的平面图形的面积的近似值=4.47

求y=ln[x2(x2+1)]/(x2+2)的导数

y'=[(4x^3+2x)(x^2+2)/(x^4+x^2)-2xln(x^4+x^2)]/[x^2+2]^2=[(4x^3+2x)(x^2+2)-2x^3(x^2+1)ln(x^4+x^2)]/[(

求y=x2+2x+3/x2+4x+5的值域,

亲,我终于看会了,我不是学霸,请叫我学渣,过程我写纸上了,先采后传答案,不用谢,我是雷锋.再问:传吧再问:?

求由曲线y=2-x2与直线y=2x+2围成图形的面积.

由y=2−x2y=2x+2可得,x=0y=2或x=−2y=−2∴曲线y=2-x2与直线y=2x+2围成图形的面积∫0−2[2−x2−(2x+2)]dx=∫0−2(−x2−2x)dx=(−13x3−x2

求由曲线y=x2与y=-x2+2所围成图形的面积

再问:用的什么方法??是极限?导数?再答:定积分啊再问:我是高中生。。还没有学。你能用导数给我讲一讲吗?因为我们正在学导数。。是极限的思想吗再答:抱歉,该题应该只有用积分来求。。。爱莫能助了,再问:应

求由直线y=x-2和曲线y=-x2所围成的图形的面积.

联立y=x−2y=−x2,得x1=-2,x2=1.所以,A=∫−21(x−2)dx−∫−21(−x2)dx=(x22−2x)|1−2+13x3| 1−2=−92,故所求面积s=92.

求由曲线x2+y2=|x|+|y|围成的图形的面积.

当x≥0,y≥0时,(x−12)2+(y−12)2=12,表示的图形占整个图形的14而(x−12)2+(y−12)2=12,表示的图形为一个等腰直角三角形和一个半圆∴S=4(12×1×1+12×π×1

求圆x2+y2+2x-6y+1=0与圆x2+y2+2y-..

解题思路:圆与圆的位置关系的应用,解题过程:

设平面图形由曲线y=x2,x=y2围成,求

(1)由于曲线y=x2,x=y2的交点为(0,0),因此以x为积分变量,得图形的面积为:(S=∫10(x−x2)dx=(23x32−13x3)|10=13(2)旋转体的体积:Vx=π∫10((x)2−