求由平面x=0,y=0, 柱体 平面z

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:15:48
求由平面x=0,y=0, 柱体 平面z
求平面x=0,y=0,x+y=1所围成的柱体,被平面z=0及平面x²+y²=6-z截得的立体的体积

不用画图,很显然,这道题用二重积分作,积分区域就是在xoy平面上由x=0,y=0,x+y=1围成的三角形,被积函数是你那个有乱码的面x²+y²=6-z解出的z=6-x²-

计算由4个平面x=0,y=0,x=1,y=1所围成的柱体被平面z=0及2x+3y+z=6截得的立体的体积

你画一个图,可知所得立体的底面为xoy平面内直线x=0,y=0,x=1,y=1围成的正方形,0

求平面x=0,y=0,x+y=1围成的柱体被z=0及抛物面x^2+y^2=6-z所截得立体的体积.请写明过程.

不用画图,很显然,这道题用二重积分作,积分区域就是在xoy平面上由x=0,y=0,x+y=1围成的三角形,被积函数是你那个有乱码的面x²+y²=6-z解出的z=6-x²-

怎么计算由四个平面X=0,Y=0,X=1,Y=1所围成的柱体被平面Z=0及2X+3Y+Z=6截得的立体体积

11∫∫(6-2x-3y)dxdy=3.500如果没学过高等数学,那么原立体是从X=0,Y=0,X=1,Y=1,Z=0,Z=6这个长方体上切下一块来,而切下来的这一块体积就是底面积为1,高为5的长方体

求由平面x=0,y=0,x+y=1所围成的柱体被平面z=0及抛物线x^2+y^2=6-z所截的的立体的体积

底:D={(x,y)|0再问:图呐!!!发我邮箱吧ohyes@hk1229.cn再答:答案君去喝茶了,我发你

2重积分求体积计算x=0 y=0 x=1 y=1所围成的柱体被平面Z=0 2x+3y+z=6截得的体积?

投影到xoy平面,z上限是6-2x-3y,下限为0,xoy平面积分区域为1≥x≥01≥y≥0,所求为体积,被积函数即为1,则∫∫∫dv=∫∫dσxy∫(0~6-2x-3y)1*dz=∫(0~1)dx∫

计算由四面:x=0,y=0,x=1,y=1所围成的柱体被平面z=0及x+y+z=3/2截得的立方体体积

这题很简单.你学过微积分吗?z=3/2-x-y,∫∫(3/2-x-y)dxdy,积分域是0到1,2个都是,故解得答案是1/2.再问:当时老师讲的时候反反复复,最后也没讲清,只是说直线可

积分求体积计算x=0 y=0 x=1 y=1所围成的柱体被平面Z=0 ,2x+3y+z=6截得的体积?

投影到xoy平面,z上限是6-2x-3y,下限为0,xoy平面积分区域为1≥x≥01≥y≥0,所求为体积,被积函数即为1,则∫∫∫dv=∫∫dσxy∫(0~6-2x-3y)1*dz=∫(0~1)dx∫

高数二重积分题:计算由平面x=0,y=0,x=1,y=1所围成的柱体被平面z=0,2x+3y+z=6截得的立体体积

本题是一个曲顶柱体的体积,结果为二重积分,积分区域是底面,也就是0

计算由四个平面x=0,y=0,x=1,y=1所围成的柱体被平面z=0及2x+3y+z=6截得的立体的体积

11∫∫(6-2x-3y)dxdy=3.500如果没学过高等数学,那么原立体是从X=0,Y=0,X=1,Y=1,Z=0,Z=6这个长方体上切下一块来,而切下来的这一块体积就是底面积为1,高为5的长方体

计算由四个平面:x=0,y=0,x=1,y=1所围成的柱体被平面z=0及x+y+z=3/2截得的立体体积.这道题目今天微

汗死!你画一个图,可知所得立体的底面为xoy平面内直线x=0,y=0,x=1,y=1围成的正方形,0

求由曲线y=x2+2与y=3x,x=0,x=2所围成的平面图形的面积.

联立y=x2+2y=3x,解得x1=1,x2=2∴S=∫01(x2+2-3x)dx+∫12(3x-x2-2)dx=[13X3+2X−32X2]10+[32X2−13X3−2X]21=1

求由曲线y=x^2+2 ,x=0,x=1 ,y=0围城的平面图形的面积.求完整步骤.

这要用到定积分.函数y=x^2+2的定积分为x^3/3+2x,故面积为1/3+2=7/3不方便写标准步骤.望采纳

1 利用二重积分计算由3x+2y+z=1 y等于2倍的x的平方 x=1 z=0 围成的曲顶柱体的体积.

连立方程3X+2Y+Z=1,Z=0.得到直线方程3X+2Y=1.在平面直角坐标系中画出XOY面上的投影区域D.求出与曲线Y=2的X平方的交点确定X,Y的取值范围.求出积分区域D后.积分先对Z积分,从0

计算由四个平面x=0 ,y=0,x=1,y=1所围成的柱体被平面z=0及2x+3y+z=6截得的立体体积

由2x+3y+z=6得z=6-2x-3y下式中(0,1)表示积分上限为1,(6-2x-3y)dxdy=∫(0,1)dx∫(0,1)(6-2x-3y)dy=∫(0,1)(6y-2xy-3/2y^2)|(

求由曲线y=sinx与直线y=2,x=0,x=Π/2围成平面图形的面积

矩形的面积减去y=sinx,x=Π/2和x轴围成的面积S=2×π/2-ʃ(0-->π/2)sinxdx =π-(-cosx|(0-->π/2)) =π+(co