求由平面z=x-y,z=0与柱面x^2 y^2=ax
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 21:58:48
(x+y-z)/z=(y+z-x)/x=(z+x-y)/y[x+y]/z-1=[y+z]/x-1=[z+x]/y-1[x+y]/z=[y+z]/x=[z+x]/y设[x+y]/z=[y+z]/x=[z
旋转曲面方程为:x²+y²=2z,与平面z=4交线为:x²+y²=8∫∫∫(x²+y²)dv=∫∫∫r²*rdzdrdθ=∫[0→
由旋转抛物面的性质,所围体积等于y=x²围绕y轴旋转所得体积,积分区域x(0,1)V=∫πx²dy=2∫πx³dx=π/2
x²+y³-xyz=0,z=(x²+y³)/(xy)=x/y+y²/x;故z/x=1/y+y²/x²z/y=x/y²+y
两个平面的法向量分别为n1=(1,-1,1),n2=(2,1,1),因此它们的交线的方向向量为n1×n2=(-2,1,3),这也是与两个平面都垂直的平面的法向量,所以所求平面方程为-2(x-1)+(y
∵y+z÷x=Z+X÷y=X+Y÷z容易发现x,y,z位置互换也成立∴式子与x,y,z值无关∴x=y=z∴(X+Y-Z)÷(X+Y+z)=x/3x=1/3明教为您解答,请点击[满意答案];如若您有不满
两端对x求偏导得:-ye^(-xy)-2(z/x)+(z/x)e^z=0,所以,z/x=ye^(-xy)/(e^z-2)两端对y求偏导得:-xe^(-xy)-2(z/y)+(z/y)e^z=0,所以,
两平面夹角,也就是法向量的夹角(或其补角)a=(1,-1,-2)b=(1,2,1)cos=(a,b)/|a||b|=-3/6=-1/2=120°两平面夹角为60°,或写成π/3
令(y+z)/x=(z+x)/y=(x+y)/z=ky+z=kxx+z=kyx+y=kz2(x+y+z)=k(x+y+z)2(x+y+z)=k(x+y+z)(2-k)(x+y+z)=0(x+y+z≠0
=∫∫zdxdy=∫∫(x-y)dxdy而积分区域底面是一个圆弧.由圆x^2+y^2=2x与y=x相交围成利用极坐标=∫∫r(cosθ-sinθ)rdrdθ而积分区域变为r^2=2rcosθ,所以为r
由2x+2y-z=1和3x+8y+z=6联立解得x/2=(y-7/10)/(-1)=(z-9/5)/2,所以直线的方向向量为a=(2,-1,2),而平面的法向量为b=(2,2,-1),它们的夹角的余弦
第一个是对的!其余两个都不对!错在:将x^2+y^2=z代入积分式.因为在立体内部x^2+y^2
平面x+2y-z+1=0与x-y+z-1=0的法线向量n1={1,2,-1},n2={1,-1,1}所以直线{x+2y-z+1=0x-y+z-1=0}的方向向量s1=n1×n2={1,-2,-3}同理
设x+y-z/z=x-y+z/y=y+z-x/x=k有x+y-z=kzx-y+z=kyy+z-x=kx三式相加得x+y+z=k(x+y+z)k=1得x+y=(k+1)zx+z=(k+1)yy+z=(k
x+y-2z+1=0与向量(1,1,-2)垂直2x-y+z=0与(2,-1,1)垂直因此所求平面与(1,1,-2)和(2,-1,1)平行与(1,1,-2)×(2,-1,1)=(-1,-5,-3)垂直所
4x-3y-3z=0①x-3y+z=0②①-②,得3x-4z=03x=4z由于z不等于0,故有x:z=4:3同理可得:①-4②,得9y-7z=09y=7zy:z=7:9
将此图形投影到z=0平面,即令z=0,则得出x与y围成的图形,化简得4*x*x+y*y=16,为椭圆,则可得出x,y的范围,然后在此范围对z二重积分,即对4-x*x-(1/4)y*y二重积分即可.
解析:可以把直线化成x=-2z=2y+2即x/1=(y+1)/(1/2)==z/(-1/2)的形式那么直线的方向向量为n=(1,1/2,-1/2)因为平面过原点,那么可以将平面方程设为:x+by+cz
/>曲面的切平面为xXo-2yYo+2zZo=1求最短距离,则切平面与平面x+y+z=2平行即Xo/1=-2Yo/1=2Zo/1即Xo=-2Yo=2Zo即2xZo+2yZo+2zZo=1即2Zo(x+