求由曲线y=x2+1与y=4x-2,x=0所围成的封闭平面图形的面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 03:55:24
求由曲线y=x2+1与y=4x-2,x=0所围成的封闭平面图形的面积
求由曲线y=x2与直线x=-1,x=2以及x轴围成的圆形的面积

什么叫圆形x=-1到0面积3分之10到23分之8一共3

求由曲线y=x平方+1与直线y=x+1,x=0,x=2所围成的平面图形的面积

求由曲线y=x²+1与直线y=x+1,x=0,x=2所围成的平面图形的面积S=(0,2)∫(x²+1)dx=[x³/3+x](0,2)=8/3+2=14/3

求由曲线y=2-x平方与x轴所围成的平面图形的面积

y=2-x²=0解得x=±√2求面积,就是积分所以=8√2/3

由Y轴与曲线Y^2=(4-X)^3所围成的图形的面积

用积分y^2=(4-x)^3与y轴交点为(0,8)和(0,-8)∫(4-y^2/3)*dy积分限为-8到8最后取绝对值

由曲线y=1x与y=x,x=4以及x轴所围成的封闭图形的面积是(  )

y=1xy=x解得x=±1∴曲线y=1x与y=x,x=4以及x轴所围成的封闭图形的面积是S=∫10xdx+∫41(1x)dx=12x2|10+lnx|41=12+ln4故选C.

数学题:求由曲线y=x与曲线y=x2所围成的图形的面积.

你是不是没学定积分,不然你这都不会怎么都解释不通啊图线有两个交点(0,0)(1,1)对y=x-x^2在(0,1)积分原函数F(x)=x2/2-x3/3围成的面积即是F(1)-F(0)=1/6记住几个常

求由曲线y=x2与y=2-x2所围成图形的面积为______.

∵曲线y=x2和曲线y=2-x2所的交点为(1,1)和(-1,1)∴曲线y=x2和曲线y=2-x2所围图形的面积为S=2∫10[(2−x2)−x2]=2∫10(2−2x2)=2(2x-23x3)|10

求由两条曲线y=-x2,4y=-x2及直线y=-1所围成图形的面积,并画出简图.

由图形的对称性知,所求图形面积为位于y轴右侧图形面积的2倍.由y=−x2y=−1得C(1,-1).同理得D(2,-1).∴所求图形的面积S=2{∫10[−x24−(−x2)]dx+∫21[−x24−(

求由两条曲线y=x2,y=x2/4和直线y=1所围成的平面区域的面积

y=x^2y=1x=±1y=x^2/4y=1x=±2面积S=2∫(0,1)2根号y-根号ydy=2∫(0,1)根号ydy=4/3*y^(3/2)|(0,1)=4/3

求过点(-1,0)与曲线y=x2+x+1相切的直线方程

答:点(-1,0),y=x^2+x+1,该点不在曲线上设切点为(a,a^2+a+1)在曲线上y对x求导得:y'(x)=2x+1切线斜率k=y'(a)=2a+1所以:k=2a+1=(a^2+a+1-0)

求由曲线x2+y2=|x|+|y|围城的图形的面积

由于图形是对称的,只考虑第一象限内的部分即可.此时绝对值号可以直接去掉x^2 + y^2 = x + y所以x^2 + 

求由曲线y=1 2x2与x2+y2=8所围成的图形的面积

题目不清楚是不是y=12x^2把圆的方程化为y=根号下(8-x^2)这时只包括y正轴区域的半圆和y=12x^2进行积分求出两曲线之下的面积再用半圆面积减之求得围城面积

求由曲线y=x2+2与y=3x,x=0,x=2所围成的平面图形的面积.

联立y=x2+2y=3x,解得x1=1,x2=2∴S=∫01(x2+2-3x)dx+∫12(3x-x2-2)dx=[13X3+2X−32X2]10+[32X2−13X3−2X]21=1

求由曲线y=2-x2与直线y=2x+2围成图形的面积.

由y=2−x2y=2x+2可得,x=0y=2或x=−2y=−2∴曲线y=2-x2与直线y=2x+2围成图形的面积∫0−2[2−x2−(2x+2)]dx=∫0−2(−x2−2x)dx=(−13x3−x2

求由曲线y=x2与y=-x2+2所围成图形的面积

再问:用的什么方法??是极限?导数?再答:定积分啊再问:我是高中生。。还没有学。你能用导数给我讲一讲吗?因为我们正在学导数。。是极限的思想吗再答:抱歉,该题应该只有用积分来求。。。爱莫能助了,再问:应

求由曲线x2+y2=|x|+|y|围成的图形的面积.

当x≥0,y≥0时,(x−12)2+(y−12)2=12,表示的图形占整个图形的14而(x−12)2+(y−12)2=12,表示的图形为一个等腰直角三角形和一个半圆∴S=4(12×1×1+12×π×1

设平面图形由曲线y=x2,x=y2围成,求

(1)由于曲线y=x2,x=y2的交点为(0,0),因此以x为积分变量,得图形的面积为:(S=∫10(x−x2)dx=(23x32−13x3)|10=13(2)旋转体的体积:Vx=π∫10((x)2−

求由三条曲线y=x2,4y=x2,y=1 所围图形的面积.

如图,因为y=x2,4y=x2是偶函数,根据对称性,只算出y轴右边的图形的面积再两倍即可.解方程组y=x2y=1 和4y=x2y=1,得交点坐标(-1,1),(1,1),(-2,1),(2,