求由曲面x*2 y*2 z*2=2az与圆锥面z*2=x*2 y*2所围成的立体

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:27:33
求由曲面x*2 y*2 z*2=2az与圆锥面z*2=x*2 y*2所围成的立体
7、求由曲面z=x^2+2y^2 以及 z=6-2x^2-y^2 所围成立体的体积

∵解方程组z=x²+2y²与z=6-2x²-y²,得x²+y²=2∴所求立体在xoy面上投影区域为D={(x,y)lx²+y

曲面z=x^2+y^2 被平面z=1 z=2所截曲面面积

-(pi*(5*5^(1/2)-27))/6另附Matlab程序段:%此程序为计算空间中给定的曲面r(u,v)的面积clearall;clc;symsuv;%{设置曲面的向量形式r(u,v)=分量函数

计算曲面积分闭合曲面I=ff(x^2+y^2)dS.其中曲面为球面x^2+y^2+z^2=2(x+y+z)

x²+y²+z²=2x+2y+2z(x-1)²+(y-1)²+(z-1)²=3令x=1+u,y=1+v,z=1+w==>Σ':u²

求由旋转抛物曲面Z=x^2+y^2与平面z=1所围成的立体的体积

由旋转抛物面的性质,所围体积等于y=x²围绕y轴旋转所得体积,积分区域x(0,1)V=∫πx²dy=2∫πx³dx=π/2

计算由曲面y^2=x及y=x^2和平面z=0,x+y+z=2所围成立体的体积

所围成立体的体积=∫dx∫(2-x-y)dy=∫(2√x-x/2-x^(3/2)-2x²+x³+x^4/2)dx=4/3-1/4-2/5-2/3+1/4+1/10=11/30

高等数学旋转曲面问题:(x/2)=y=-(z-1)绕x轴旋转,求此旋转曲面.

设A(x1,y1,z1)为x/2=y=-(z-1)上的任意点,其关于x轴的对称点为A'(x,y,z).易知:x=x1,y1=(x1)/2,z1=1-(x1)/2,y+z=y1+z1→2(y+z)=x-

计算由曲面z=1-x^2-y^2与z=0所围成的立体体积

这题用二重积分,三重积分都可求得.

1.设z=z(x,y)是由方程式e的z次方=xyz所含的隐函数,求dz 2.计算出曲面z=2-x^-y^2与xoy坐标面

1e^z=xyze^zz'x=yz+xyz'xz'x=yz/(xy-e^z)=yz/(xy-xyz)=z/(x-xz)类似z'y=z/(y-yz)dz=[z/(x-xz)]dx+[z/(y-yz)]d

求原点到曲面(x-y)^2-z^2=1的最短距离.

貌似是根号2/2思路是对的呀分别对x,y,z偏导得x/根号(x^2+y^2+z^2)+2к(x-y)=0y/根号(x^2+y^2+z^2)-2к(x-y)=0z/根号x^2+y^2+z^2+2кz=0

曲面积分∫∫xdydz+z^2dxdy/(x^2+y^2+z^2),其中曲面∑是由x^2+y^2=R^2及z=R,z=-

这题,昨天刚刚答了.这个不能用高斯定理,因为在这个比区域内,含有积分函数的奇点(0,0,0)所以分开来求即可.对于z=R和z=-R两个面∑1和∑2,因为dz=0而且两个面处,z=R处的投影,是朝上的圆

求由曲面x^2=a^2-az,x^2+y^2=a^2,z=0(a>0)所围立体的体积

该立体是在xoy面的上方,由于该立体的对称性,只需求出该立体在第1挂限的那部分图形的体积,然后4倍即得全部立体的体积.草图中画的是该立体在第1挂限的那部分图形,这个图形是由5个面围成的,简要地说,其中

求平面x+y+z=2与曲面x^2-2y^2+2z^2=1(x,y,z>0)之间的最短距离

/>曲面的切平面为xXo-2yYo+2zZo=1求最短距离,则切平面与平面x+y+z=2平行即Xo/1=-2Yo/1=2Zo/1即Xo=-2Yo=2Zo即2xZo+2yZo+2zZo=1即2Zo(x+

高等数学重积分的应用 求由曲面z=x²+y²,z=根号下(2-x²-y²)所围成

消去z,(x^2+y^2)^2=2-(x^2+y^2),(x^2+y^2)^2+(x^2+y^2)-2=0,{(x^2+y^2)-1][(x^2+y^2)+2]=0,后者大于零,则x^2+y^2=1,

求由曲面z=2-x^2 ,z= x^2 + 2 y^2 所围成的立体的体积

首先将两个方程并列找出两个曲面相交的曲线.通过消去z,我们得到:2-x²=x²+2y²即x²+y²=1所以,此曲线位于半径为1的圆柱面上.那么x和y的

求由曲面z=x^2+2*y^2及z=6-2*x^2-y^2所围成的立体的体积.

曲面z=x^2+2*y^2是一个开头向上的马桶型的图形,z=6-2*x^2-y^2是前面那个图形关于z轴对称后向z轴正方向移动6个单位后得到的图形,是一个与前者图形完全相同但是开口向下的图形且与前者所

曲面方程指出下列方程是什么曲面,若是旋转曲面,指出他们由什么曲面旋转而成1.(x^2)/4+(y^2)/9+(z^2)/

1.椭球面.关于原点中心对称.系旋转曲面.由YOZ坐标平面的椭圆(y^2)/9+(z^2)/4=1绕Y轴旋转180度形成;或者由XOY坐标平面的椭圆(x^2)/4+(y^2)/9=1绕Y轴旋转180度

求由曲面z=0及z=4-x^2-y^2所围空间立体的体积?二重积分解

联立z1=x^2+2y^2及z2=6-2x^2-y^2消去z得x^2+y^2=2(图略.z2在上z1在下)知方体Ω在xoy面投影区域为D:x^2+y^≤2极坐标中0≤θ≤2π,0≤r≤√2那么立体的Ω

求由曲面z=x^2+y^2,z=4-y^2所围立体的体积,用三重积分

∵所求体积在xy平面的投影是S:x²/4+y²/2=1∴所求体积=∫∫[(4-y²)-(x²+y²)]dxdy=∫∫(4-x²-2y