求由曲面z=x^2 2y^2及

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:29:02
求由曲面z=x^2 2y^2及
求曲面z=x^2+2y^2及z=6-2x^2-y^2所围成立体的体积.(用重积分做)

z=x^2+2y^2叫椭圆抛物面,教材里在“二次曲面”部分是介绍过这种曲面的,它的立体图形如开口向上的旋转抛物面,只不过用平行于xoy面的平面去截,截痕不是圆,而是椭圆.z=6-2x^2-y^2也是椭

7、求由曲面z=x^2+2y^2 以及 z=6-2x^2-y^2 所围成立体的体积

∵解方程组z=x²+2y²与z=6-2x²-y²,得x²+y²=2∴所求立体在xoy面上投影区域为D={(x,y)lx²+y

关于二重积分的一道题原题为:求由曲面z=x^2+2y^2及z=6-2x^2-y^2所围成的立体体积.答案给出的被积函数是

实际球面于面所围成的立体体积时,被积量是dS,答案给出的变化量应该是dxdy楼主注意区别题中变化量是dS的时候被积函数是1变化量变为dxdy时被积函数才是(6-2x^2-y^2)-(x^2+2y^2)

计算由曲面z=x^2+y^2,三个坐标面及平面x+y=1所围立体的体积,答案是1/6,

求由x=0y=0x+y=1围成的三棱柱的体积下底为z=0上底为z=x^2+y^2(圆锥)=∫(0,1)dx∫(0,1-x)dy∫(0,x^2+y^2)dz=∫(0,1)dx∫(0,1-x)[z](0,

计算由曲面y^2=x及y=x^2和平面z=0,x+y+z=2所围成立体的体积

所围成立体的体积=∫dx∫(2-x-y)dy=∫(2√x-x/2-x^(3/2)-2x²+x³+x^4/2)dx=4/3-1/4-2/5-2/3+1/4+1/10=11/30

计算由曲面z=x*x+y*y及平面z=1所围成的立体体积

z从0到1,立体垂直于z轴的截面为圆,半径r^2=x^2+y^2,面积s=πr^2=π(x^2+y^2)=πz.所以V=s(z)从0到1的积分,所以V=πz^2/2|(0,1)=π/2-0=π/2由旋

求 高数帝做几道提:第一题:求曲面Z=x²+2y²及Z=6-2x²-y²所围的体

由Z=x²+2y²和Z=6-2x²-y²可得二者的交线为x²+y²=2由此可得V=∫∫[(x²+2y²)-(6-2x&#

一道高数题:求由曲面Z=X的平方 2Y的平方及Z=6-2X的平方-Y的平方所围成的立体的体积.利用二重积分做!

两曲面的交线在xy坐标面上的投影曲线是x^2+y^2=2,所以整个立体在xy面上的投影区域是D:x^2+y^2≤2体积V=∫∫(D)[(6-2x^2-y^2)-(x^2+2y^2)]dxdy用极坐标=

曲面积分∫∫xdydz+z^2dxdy/(x^2+y^2+z^2),其中曲面∑是由x^2+y^2=R^2及z=R,z=-

这题,昨天刚刚答了.这个不能用高斯定理,因为在这个比区域内,含有积分函数的奇点(0,0,0)所以分开来求即可.对于z=R和z=-R两个面∑1和∑2,因为dz=0而且两个面处,z=R处的投影,是朝上的圆

高等数学重积分的应用 求由曲面z=x²+y²,z=根号下(2-x²-y²)所围成

消去z,(x^2+y^2)^2=2-(x^2+y^2),(x^2+y^2)^2+(x^2+y^2)-2=0,{(x^2+y^2)-1][(x^2+y^2)+2]=0,后者大于零,则x^2+y^2=1,

求由曲面z=x^2+2y^2及z=6-2x^2-y^2所围成的立体的体积

∵解方程组z=x²+2y²与z=6-2x²-y²,得x²+y²=2∴所求立体在xoy面上投影区域为D={(x,y)lx²+y

求由曲面z=x^2+2*y^2及z=6-2*x^2-y^2所围成的立体的体积.

曲面z=x^2+2*y^2是一个开头向上的马桶型的图形,z=6-2*x^2-y^2是前面那个图形关于z轴对称后向z轴正方向移动6个单位后得到的图形,是一个与前者图形完全相同但是开口向下的图形且与前者所

求由曲面z=0及z=4-x^2-y^2所围空间立体的体积?二重积分解

联立z1=x^2+2y^2及z2=6-2x^2-y^2消去z得x^2+y^2=2(图略.z2在上z1在下)知方体Ω在xoy面投影区域为D:x^2+y^≤2极坐标中0≤θ≤2π,0≤r≤√2那么立体的Ω

化三重积分i=∫∫∫f(x,y,z)dxdydz为三次积分,其曲面由z=x^2+2y^2及z=2-x^2所围成

先判断两个曲面的大小关系:z=x²+2y²为顶点在原点,开口向上的椭圆旋转抛物面z=2-x²为顶点在直线y=0上,开口向下的抛物面所以有==>x²+2y

带绝对值的三重积分∫∫∫ |z-x^2+y^2| dxdydz,(注意这里有绝对值)其中空间闭曲面由z=0,z=1及曲面

作柱面坐标变换,设x=rcosφ,y=rsinφ,z=z故∫∫∫|z-x^2+y^2|dxdydz=∫(0,2π)dφ∫(0,√2)rdr∫(0,1)|z-r|dz(符号∫(a,b)表示从a到b积分,

求曲面z=x平方+2y平方及z=6-2X平方-y平方所围成立体的体积

两曲面的交线在xy坐标面上的投影曲线是x^2+y^2=2,所以整个立体在xy面上的投影区域是D:x^2+y^2≤2体积V=∫∫(D)[(6-2x^2-y^2)-(x^2+2y^2)]dxdy用极坐标=

求曲面z=x^2 y^2及平面z=4所围成立体的体积

这个是二重积分算出来的啊:积分区域D:x²+y²≤4V=∫∫(4-x²-y²)dxdy=∫【0→2π】dθ∫【0→2】(4-ρ²)ρdρ=2π*(2ρ

求由曲面z=x^2+y^2,z=4-y^2所围立体的体积,用三重积分

∵所求体积在xy平面的投影是S:x²/4+y²/2=1∴所求体积=∫∫[(4-y²)-(x²+y²)]dxdy=∫∫(4-x²-2y