求证顺次连接任意凸四边形四边中点,构成一个平行四边形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:11:44
求证顺次连接任意凸四边形四边中点,构成一个平行四边形
八年纪的如图,以知顺次连接菱形ABCD四边的中点E、F、N、M得到四边形EFNM.求证四边形EFNM是矩形吗?

是证明:连接AC,BD∵ABCD是菱形∴AC⊥BD∵M是AD中点,E是AB中点∴ME平行BD,ME=1/2BD同理可得NF‖BD,NF=1/2BD所以四边形EFNM是平行四边形因为MN‖AC.AC⊥B

求证:顺次连接任意凸四边形各边中点,构成一个平行四边形(用向量的方法证明)

设任意四边形ABCD连接对角线AC、BD交于O连接EFGH(E、F、G、H分别为AB、BC、CD、DA的中点)在三角形ABD中因为EF是中位线,所以EH//BD,EH=1/2BD在三角形BCD中因为G

顺次连接等腰梯形四边的中点所得的四边形是什么特殊的四边形?画出图形,写出已知和求证,并证明

顺次连接等腰梯形四边的中点所得的四边形是菱形已知:等腰梯形ABCDE.F.G.H分别是AD,AB,BC,CD的中点求证:四边形EFGH是菱形证明:连接AC,BD因为ABCD是等腰梯形所以AC=BD因为

利用向量法证明:顺次连接菱形四边中点的四边形是矩形.

在菱形ABCD上取各边AB,BC,CD,DA中点为E,F,G,H,连接EF,AC,EH,BD,因为E,F是中点,所以有EF向量=1/2(AB向量+BC向量)=1/2(AC向量),同理得FG向量=1/2

求证:顺次连接菱形的四边中点得到的四边形是矩形

知:菱形ABCDABBCCDDA的中点分别为EFGH因为EH//BD且等于1/2BD又FG//BD且等于1/2BD(根据三角形中线原理)所以EH=BD所以EFGH为平行四边形又因为AC垂直BD所以EF

如图,矩形A1B1C1D1的面积为4,顺次连接各边中点得到四边形A2B2C2D2,再顺次连接四边形A2B2C2D2四边中

∵四边形A1B1C1D1是矩形,∴∠A1=∠B1=∠C1=∠D1=90°,A1B1=C1D1,B1C1=A1D1;又∵各边中点是A2、B2、C2、D2,∴四边形A2B2C2D2的面积=S△A1A2D2

顺次连接等腰梯形四边中点所得的四边形是什么特殊的四边形?画出图形,写出已知,求证并证明.

是菱形理由是:连接AC、BD∵E、F、G、H分别是AB、BC、CD、DA的中点∴EF=12AC,GH=12AC,EH=12BD,GF=12BD∵等腰梯形ABCD中AD∥BC,AB=CD,∴AC=BD∴

在平行四边形、矩形、菱形、等腰梯形4个四边形中,顺次连接每个四边形的四边中点,所得图形是中心对称图形但不是轴对称图形,则

A、顺次连接平行四边形的四边中点得到的四边形是平行四边形,平行四边形不是轴对称图形,是中心对称图形,故正确;B、顺次连接矩形的四边中点得到的四边形是菱形,菱形是轴对称图形,是中心对称图形,故错误;C、

关于四边形在平行四边形ABCD中,点E、F、G、H分别为四边的中点,顺次连接EF、FG、GH、HE,判断四边形EFGH的

∵△ABD中,E,H是AB和AD中点∴EH是△ABD的中位线∴EH∥BD,EH=1/2BD同理FG∥BD,FG=1/2BD∴EH∥FG,EH=FG∴平行四边形EHGF再问:不好意思,我提的问题下半部分

在四边形ABCD中,顺次连接四边的中点E,F,G,H,构成一个新的四边形.试证明四边形EFGH是平行四边形.

连接AC,因为点E、F、G、H分别为AB、BC、CD、DA的中点,利用三角形中位线定理得EF平行且等于二分之一的AC、GH平行且等于二分之一的AC,所以EF平行且等于GH,所以EFGH是平行四边形.

顺次连接矩形四边中点所得的四边形一定是(  )

连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=12BD,同理FG=12BD,HG=12AC,EF=12AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH

顺次连接等腰梯形四边中点所得四边形是(  )

如图,已知:等腰梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分别是各边的中点,求证:四边形EFGH是菱形.证明:连接AC、BD.∵E、F分别是AB、BC的中点,∴EF=12AC.同理FG=1

求证:顺次连接任意四边形各边中点得到的四边形为平行四边形

证明:设四边形为ABCD,E,F,G,H分别是AB,BC,CD,AD的中点连接AC,BD∵E是AB的中点,H是AD的中点∴EH是⊿ABD的中位线∴EH//BD∵F是BC的中点,G是CD的中点∴FG是⊿

求证:顺次连接任意四边形各边中点得到的四边形是平行四边形.

证明:四边形ABCD中,EFGH分别为ABBCCDDA中点联结EFGH,在三角形ABC中,EF是AC边的中位线,EF平行AB且等于1/2AB,同理,GH平行AB且等于1/2AB,所以EF平行GH且等于

求证:顺次连接任意四边形各边中点得到的四边形为平行四边形,其周长等于原四边形的对角线之和

连接原来四边形的一条对角线根据三角形中位线定理,可以得到新得到的四边形的一组对边和这条对角线平行,且等于它的一半,所以这组对边平行且相等,从而得到这是平行四边形.再连接另一条对角线,同样得到另一组对边

顺次连接等腰梯形四边中点得到一个四边形,再顺次连接所得四边形四边的中点得到的图形是______.

连接AC,BD,∵四边形ABCD是等腰梯形,∴AC=BD,∵E、F、G、H分别是AD、AB、BC、CD的中点,∴EF=12BD,EH∥AC,EH=12AC,FG∥AC,FG=12AC,∴EH=EF,E

求证:顺次连结矩形四边中点所得的四边形是菱形

已知:矩形ABCD,E、F、G、H分别是AB、BC、CD、AD中点.求证:四边形EFGH是菱形.证明:∵E是AB中点  F是BC中点∴EF‖AC  EF=1/2

如图在四边形ABCD中,顺次连接四边的中点E,F,C,H,构成一个新的四边形.证明四边形E,F,G,H是平行四边形

连接bd,因为f,g为bc,dc中点,所以fg平行且等于二分之一bd,同理可得,eh平行且等于二分之一bd,一组对边平行且相等的四边形是平行四边形,所以efgh是平行四边形

证明顺次连接菱形的四边中点得到的四边形是矩形

画一个菱形ABCD,连接对角线AC,BD,连接各边中点E,F,D,G.∵E是AB的中点,F是BC中点∴BE/AB=BF/BC=1/2又∵∠FBE=∠FBE∴△BEF∽△BAC∴EF‖AC同理GD‖AC