求隐函数的Y的导数arctany x=ln
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:38:00
symstx=log(sqrt(1+t^2));y=atan(t);%一阶导数Dyx1=diff(y,t)/diff(x,t)%二阶导数Dyx2=diff(Dyx1,t)/diff(x,t)结果:Dy
x(2的x次方*In2-sinX)-3(cosX+2的X次方)y'=————————————————————X的四次方好像是的吧
(1)y'=e^arctan√x(1/1+x)(1/2x的(-1/2次方))(2)y‘=1/cose^x(-sine^x)e^x
再问:л�˰�再问:��
全是二元函数,二元函数求偏导的实质就是一元函数求导,没什么区别.对x求偏导的时候把y看做是常数就可以了,对y求偏导把x看成是常数就可以了没什么复杂的再问:答案是?再答:别只想着要答案啦,解答案不难,关
y'=1/(1+x^2+1)*[√(x^2+1)]'=1/(x^2+2)*2x/2√(x^2+1)=x/[(x^2+2)√(x^2+1)]
反函数就是x与y的位置换一下先将其化到最简单,然后将x与y换一下即可y=πarctan(x/2)arctan(x/2)=y/πx/2=tan(y/π)x=2tan(y/π)所以y的反函数为y=2tan
求函数y=π+arctan(x/2)的反函数根据反函数的性质,函数的反函数与函数关于y=x直线对称,所以有y=π+arctan(x/2)的反函数为:x=π+arctan(y/2),表示成自变量为x、因
注意原函数的定义域和值域:定义域x属于全体实数,值域y属于(π/2,3π/2).所以求得反函数为:y=2tan(x-π)=2tanx,函数定义域为原函数的值域(π/2,3π/2)
两边求导(y'x-y/x^2)/[1+(y/x)^2]=x+yy'/(x^2+y^2)^1/2整理y'x-y=(x+yy')(x^2+y^2)^1/2
左右两边对x求导,注意y是关于x的复合函数:(x^2+y^2)^(-1/2)*(2x+2y*y')=[1/(1+y/x)]*(y/x)^(-1/2)*[(y'x-y)/(x^2)]把y'归在一边,就可
须知(e^x)'=e^x,(arctanx)'=1/(1+x²)y=e^arctan(1/x)y'=e^arctan(1/x)·1/[1+(1/x)²]·(-1/x²)=
u=arctan(x/y)先求一阶偏导数:ux=(1/y)/[1+(x/y)^2]=y/(x^2+y^2)uy=(-x/y^2)/[1+(x/y)^2]=-x/(x^2+y^2)再求二阶偏导数:uxx
y'=-(e^y+xy'e^y)-y'=e^y+xy'e^yxy'e^y+y'=-e^y(xe^y+1)y'=-e^yy'=-e^y/(xe^y+1)y'=-e^y/(xe^y+1)
dz=1/y/(1+x^2/y^2)*dx-x/y^2/(1+x^2/y^2)*dy
此题是这样的吧:函数y=arctan[(1+x)/(1-x)]?若是这样,y′=1/[1+(1+x)²/(1-x)²][(1-x)+(1+x)]/(1-x)²=2/[(1