F(X)=∫sint tdt,f(t)的导数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:01:23
F(X)=∫sint tdt,f(t)的导数
证明∫(-a,a)f(x)dx=∫(0,a)[f(x)+f(-x)]dx

左边=∫[-a→a]f(x)dx=∫[-a→0]f(x)dx+∫[0→a]f(x)dx前一个积分换元,令x=-u,则dx=-du,u:a→0=∫[a→0]f(-u)d(-u)+∫[0→a]f(x)dx

f(x)连续且f(x)=x+(x^2)∫ (0,1)f(t)dt,求f(x)

两边求两次导,然后就象解决微分方程一样解决它

f(x)=xsinx-∫(0~x)(x-t)f(t)dt ,f(x)连续 求f(x)

f(x)=xsinx-x∫[0→x]f(t)dt+∫[0→x]tf(t)dtf(0)=0f'(x)=sinx+xcosx-∫[0→x]f(t)dt-xf(x)+xf(x)=sinx+xcosx-∫[0

已知f(x)=e^x+4∫f(t)dt,求∫f(x)dx

显然积分项会得到一个常数所以令C=4∫f(t)dtf(x)=e^x+C代回C=4积分(e^t+C)dtC=4[e^t+Ct]|C=4(e+C-1-0)C=4e+4C-44-4e=3CC=(4-4e)/

设有连续函数f(x)满足∫f(tx)dt(从0到1)=f(x)+xsinx,求f(x).

令tx=u则∫f(tx)dt(从0到1)=∫f(u)d(u/x)(从0到x)=(1/x)∫f(u)du(从0到x)带入原方程∫f(u)du(从0到x)=xf(x)+x^2sinx两边微分f(x)=f(

①设f(x)=x+2∫(0,1)f(t)dt,求f(x).

第一题:令f(x)=y方便计算对方程直接求导得y的导数为1.则令y=x+a代入原方程得x+a=x+2∫(0,1)(t+a)dt化简方程得a=1+2a求得a=-1所以y=x-1第二题:先化简方程∫(0,

f(x) = x - ∫(0~π) f(x) * cosx dx f'(x) = 1

f(x)=x-∫(0~π)f(x)*cosxdx、后面那项是常数、两边取导数f'(x)=1-0=1、再两边取积分其中:∫(0~π)f(x)*cosxdx=∫(0~π)f(x)d(sinx)、分部积分法

∫[f(x)/f'(x)-f^2(x)f"(x)/f'^3(x)]dx 如题

[f(x)/f'(x)]'=[f'²(x)-f(x)f''(x)]/f'²(x)=1-f(x)f''(x)/f'²(x)因此题目中的被积函数为:[f(x)/f'(x)-f

高数设f'(x)=x,f(0)=0,则∫f(x)dx

由f'(x)=x,f(0)=0,得f(x)=1/2x^2∫f(x)dx=1/6x^3+c希望采纳

f(xy)=f(x)+f(y),证明f(x/y)=f(x)-f(y)

证明令x=x/y,y=y∵f(xy)=f(x)+f(y)∴f(x/y*y)=f(x/y)+f(y)f(x)=f(x/y)+f(y)∴f(x/y)=f(x)-f(y)

若f(x)=e^x+2∫(0 1)f(x)dx 求f(x)

定积分是常数,所以设∫[01]f(x)dx=A则f(x)=e^x+2∫[01]f(x)dx=e^x+2A两边在区间[0,1]进行定积分得∫[01]f(x)dx=∫[01](e^x+2A)dxA=∫[0

y=f(f(f(x))) 求导

f'(f(f))*f'(f)*f'

f(x)=e^x/x,求∫f'(x)dx/1+f^2(x)?

∫f'(x)dx/1+f^2(x)=∫df(x)/[1+f^2(x)]=arctanf(x)+c=arctan(e^x/x)+c

d∫f(x)dx=f(x) 对吗?

对,因为∫f(x)dx是f(x)的一个原函数,所以再对这个原函数微分仍然得到的是f(x)!

d(∫f(x)dx)=f(x)对吗?

你这是求微分?∫ƒ(x)dx=F(x)+Cd[∫ƒ(x)dx]=[F(x)+C]dx=ƒ(x)dx,这是微分形式而d[∫ƒ(x)dx]/dx=d[F(x)+C]

f(x+2)>=f(x)+2,f(x+3)

∵f(x+2)>=f(x)+2,∴f(x+3)≥f(x+1)+2.又∵f(x+3)≤f(x)+3,∴f(x+1)+2≤f(x+3)≤f(x)+3,即f(x+1)+2≤f(x)+3,∴f(x)+1≥f(

设连续函数f(x)满足f(x)=e^x-∫(0,x)f(t)dt,求f(x)

土豆团邵文潮为您答疑解难,如果本题有什么不明白可以追问,请谅解,

若∫ f(x)dx=F(x)+C,∫ f(3x+5)dx=

∫f(3x+5)dx=(1/3)×∫f(3x+5)d(3x)=(1/3)×∫f(3x+5)d(3x+5)=(1/3)F(3x+5)+C