f(x,y)=xy(x>0,x不等于1)的偏导数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:09:55
因为f(x+y,xy)=x^2+y^2=(x+y)^2-2xy所以f(x,y)=x^2-2y现对x求导得到:fx(x,y)=2x再对y求导得到:fxy(x,y)=0.所以无论x,y为何值,fxy(x,
对任意的x1,x2属于(0,+∞),设x11,故f(x2/x1)>0.则f(x2)-f(x1)=f(x2/x1)>0,就是f(x1)0=f(1),由题设条件与递增的结论,得到x^2+2x+a>1,(x
设x=0Y=0则F(0)=2F(0),F(0)=0,设X=X,Y=-X,则F(0)=F(X)+F(-X),移项,为奇,-F(X)大于0,则F(-X)大于0,结合已知,增,F2=2F1=6,F3=F2+
1、设x1>x2令x+y=x1,x=x2,则y=x1-x2>0代入f(x+y)=f(x)+f(y),有:f(x1)=f(x2)+f(x1-x2)因为x1-x2>0,所以f(x1-x2)
(1)令x=y=-1,所以f(1)=f(-1)+f(-1),所以2f(-1)=0,所以f(-1)=0(2)f(-x)=f(-1*x)=f(-1)+f(x)=f(x),所以f(x)为偶函数(3)f(x)
设函数f(x,y)=sin(x+y),那么f(0,xy)=(sinxy)应该是sin0+sinsy=0+sinxy=sinxy再问:limsinxy\2x=()补充x→0,y→3另外一道题
第一题对x求偏导,那么y就是常数因为在xy=0出不连续所以要这么求=(lim△x->0)(f(x+△x,y)-f(x,y))/△x把x=0y=1带入得(lim△x->0)sin△x²/△x&
证明令x=x/y,y=y∵f(xy)=f(x)+f(y)∴f(x/y*y)=f(x/y)+f(y)f(x)=f(x/y)+f(y)∴f(x/y)=f(x)-f(y)
设a=xy,b=x+y.f(xy,x+y)=x^2+y^2+2xy-2xy=(x+y)^2-2xy把a,b带f(a,b)=b^2-2a所以f(x,y)=y^2-2x同理f(x+y,xy)=x^2+y^
因为f(xy)-f(x)=f(y)所以f(xy)=f(x)+f(y)所以f(x*y/x)=f(x)+f(x/y)即f(y)=f(x)+f(x/y)所以f(x/y)=f(x)-f(y)
证明:(1)令x=y=1则f(1)=f(1)*f(1),故f(1)=0或1若f(1)=0,则f(2*1)=f(2)=f(2)f(1)=0,与已知条件矛盾,故f(1)=1令y=-x,则f(1)=f(x)
挺好的题f(xy)=xf(y)+yf(x)---(1)设y=c=常量则:f(cx)=cf(x)+f(c)x两边求导数f'(cx)*c=cf'(x)+f(c)cf'(cx)-cf'(x)=f(c)此式对
取x∈(0,1),那么1/x∈(1,+∞)又f(1/x)=f(1)f(1/x),那么f(1)=1而f(1)=f(x)f(1/x)则f(x)=1/f(1/x)∈(0,1)综上可得x∈(0,+∞)时,f(
3=1+1+1=f(2)+f(2)+f(2)=f(2*2)+f(2)=f(4*2)=f(8)f(x)+f(x-2)=f(x*(x-2))=f(x^2-2x)结合定义域知识,所以f(x)+f(x-2)0
x^(y-1)=yx=y^[1/(y-1)]底和幂无法合并x^y=xy不能给出表达式f(x)
设该二元函数为g(x,y),则g'x(x,y)=xy(x+y)-f(x)y两边对x求积分g(x,y)=x³y/3+x²y²/2-y∫f(x)dxg'y(x,y)=f'(x
x,y都是未知数,你也可以把他们当做t,r那么就是求f(t,r)首先由题意知2x+y=t,2y+x=r用t,r表示x,y,可得x=1/3(2t-r),y=1/3(2r-t)并将其代入f(2x+y,2y
f(x+y,xy)=x^2+y^2=(x+y)^2-2xyf(x,y)=x^2-2y
函数y=f(x)对任意实数x,y都有f(x+y)=f(x)+f(y)+2xy求f(0)的值f(x+0)=f(x)+f(0)+2x*0=f(x)+f(0)f(0)=f(x+0)-f(x)=f(x)-f(
f(x)=f(x×1)=f(x)+f(1),f(1)=0当x>1时f(1)=f(x×1/x)=f(x)+f(1/x)=0因为f(x)>0所以f(1/x)