F(x,y,z)=0的意思

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:29:28
F(x,y,z)=0的意思
设函数f(x,y,z)=yz^2 e^x,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则函数f(x,y,

df(x,y,z)/dx=[d(z^2)/dx]*y*e^x+y*z^2*(de^x/dx)=2zye^x(dz/dx)+y*z^2*e^x另,由x+y+z+xyz=0求dz/dx两边对x求偏导1+0

这有道数学课后习题,设x=x(y,z),y=y(x,z),z=z(x,y)都是由方程F(x,y,z)=0所确定的具有连续

①求∂x/∂y:由x=x(y,z)代入方程F(x,y,z)=0,即F(x(y,z),y,z)=0,则把其看成关于未知数y,z的方程,则对其双边关于y求导,得F1'*∂

z=f(x*x-y*y,e的XY次方)求Z对X偏导 Z对Y偏导

(太麻烦拉,给点分啊!)设v=x*x-y*y,u=exp{xy}那么dv/dx=2x(这里应该用偏导符号,代替一下),dv/dy=2y,du/dx=y*exp{xy},du/dy=x*exp{xy}那

设变量x,y,z满足约束条件:x+y+z=1,0≤x≤1,0≤y≤2,3y+z≥2,求F=3x+6y+4z的最大值.

由题得:z=1-x-y代入3y+z》2得:x-2y+1《0则,x、y属于由,0≤x≤1,0≤y≤2,x-2y+1《0所围成的直角梯形中,四个顶点坐标分别为:(0,1/2)、(1,1)、(1,2)、(0

方程F(x/z,y/z)=0确定了函数z=f(x,y),其中F为可微函数,求z关于x和y的偏导

F(x/z,y/z)=0,F_1表示F对第一个变量求导,F_2表示F对第二个变量求导.根据chainrule:两边对x求导得到F_1(x/z,y/z)*(1/z+z_x*[x/(-z^2)])+F_2

设G(x+z*y^(-1),y+z*x^(-1))=0确定了z=f(x,y)证明:x*z对x的偏导数+y*z对y的偏导数

G[x+z*y^(-1),y+z*x^(-1)]=0证明x*∂z/∂x+y*∂z/∂y=z-xy?Gz=(1/y)G1+(1/x)G2=LGx=G1-(

设F(u,v)是可微函数,而方程F(x+z/y,y+z/x)=0,确定的函数z=(x,y) 证明x*(αz/αx)+y*

设F关于u和v的偏导函数分别记为f'1,f'2,下记f'1(x+z/y)=a,f'2(y+z/x)=b(a和b都是关于x,y,z的表达式)则由F(x+z/y,y+z/x)=0由复合函数偏导法则αF/α

设z=f(x,y)是由方程e^z-Z+xy^3=0确定的隐函数

e^z-z+xy^3=0偏z/偏x:z'e^z-z'+y^3=0y^3=z'(1-e^z)z'=y^3/(1-e^z)偏z/偏y:z'e^z-z'+3xy^2=0z'=3xy^2/(1-e^z)偏z/

设x=x(y,z),y=y(x,z),z=(x,y)都是由方程F(x,y,z)=0所确定的具有连续偏导得函数,证明dx/

由连续偏导函数x=x(y,z)得∂x/∂y=-Fy/Fx同理:∂y/∂z=-Fz/Fy∂z/∂x=-Fx/Fz所以(∂

设Z=f(xz,z/y)确定Z为x,y的函数求dz

f对第1个变量的偏导函数记作f1,第2个变量的偏导函数记作f2,dz=f1*d(xz)+f2*d(z/y)...[注:写完整的话是f1(xz,z/y),f2也如此]=f1*(xdz+zdx)+f2*(

方程f(y/z,z/x)=0确定z是x,y的函数,f有连续的偏导数,且f'v(u,v)≠0.

用微分.再问:能不能用复合函数求导解下再答:用的就是复合函数求导方法。函数t=f(y/z,z/x)是由t=f(v,u)和v=y/z、u=z/x三个函数复合而成的。解答过程省略了:df(v,u)=0;f

对任意x,y属于z,f(xy)=f(x)f(y)(mod1997)什么意思,

对于任意的整数x和y,都符合F(xy)除以1997的余数与f(x)f(y)的乘积除以1997的余数相等

设方程f(z/x,y/z)=0确定了函数z=z(x,y)且f具有连续偏导数求z对x的偏导和z对y的偏导

设:f1=偏f/偏(z/x),f2=偏f/偏(y/z),则由f(z/x,y/z)=0得:0=偏f/偏x=f1偏(z/x)/偏x+f2偏(y/z)/偏x=f1[-z/x²+(1/x)(偏z/偏

设x=x(y,z),y=y(x,z),z=z(x,y)都是由方程F(x,y,z)=0所确定的具有连续偏导的函数,证明:(

x=x(y,z),y=y(x,z),z=z(x,y)都是由方程F(x,y,z)=0所确定的具有连续偏导的函数(əx/əy)*(əy/əz)*(əz/&

设y=f(x,z),而z是由方程g(x,y,z)=0所确定的x,y的函数,

若z=f(x,y)由方程F(x,y,z)=0确定,则将F(x,y,z)=0两边对x,y求导(x,y视为独立变量,z视为x,y的函数)这个是没有问题的,但此处x,y为两个独立的变量;题1.设y=f(x,

f(x,y,z,w)=x*(x+y)*(x+y+z)*(x+y+z+w)

f=x+1f+u=2x+3f+u+c=3x+8f+u+c+k=4x+15f(f,u,c,k)=(x+1)(2x+3)(3x+8)(4x+15)

请问:f(x,y,z)=0 f(x,y,z) 分别对 x ,y ,z 的偏导数等于什么,为什么?其中f(x,y,z)=0

如果偏导数都等于零那么说明f(x,y,z)不是关于x,y,z的函数,或者说相对于x,y,z来说f(x,y,z)是一个常数.

一个高数的困惑为什么满足方程组F(x,y,z)=0 G(x,y,z)=0的所有曲面束为F(x,y,z)+aG(x,y,z

你的问法是不是有问题啊,你想知道的可能是下面我说的.这个方法我给别人解答题目时用的,你可以看下.我是从平面的角度去解释至于曲面就有待研究了.他的题目是:求过直线2x-y-2z+1=0与x+y+4z-2