F(x,y,z)=0的意思
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:29:28
df(x,y,z)/dx=[d(z^2)/dx]*y*e^x+y*z^2*(de^x/dx)=2zye^x(dz/dx)+y*z^2*e^x另,由x+y+z+xyz=0求dz/dx两边对x求偏导1+0
①求∂x/∂y:由x=x(y,z)代入方程F(x,y,z)=0,即F(x(y,z),y,z)=0,则把其看成关于未知数y,z的方程,则对其双边关于y求导,得F1'*∂
(太麻烦拉,给点分啊!)设v=x*x-y*y,u=exp{xy}那么dv/dx=2x(这里应该用偏导符号,代替一下),dv/dy=2y,du/dx=y*exp{xy},du/dy=x*exp{xy}那
由题得:z=1-x-y代入3y+z》2得:x-2y+1《0则,x、y属于由,0≤x≤1,0≤y≤2,x-2y+1《0所围成的直角梯形中,四个顶点坐标分别为:(0,1/2)、(1,1)、(1,2)、(0
F(x/z,y/z)=0,F_1表示F对第一个变量求导,F_2表示F对第二个变量求导.根据chainrule:两边对x求导得到F_1(x/z,y/z)*(1/z+z_x*[x/(-z^2)])+F_2
G[x+z*y^(-1),y+z*x^(-1)]=0证明x*∂z/∂x+y*∂z/∂y=z-xy?Gz=(1/y)G1+(1/x)G2=LGx=G1-(
设F关于u和v的偏导函数分别记为f'1,f'2,下记f'1(x+z/y)=a,f'2(y+z/x)=b(a和b都是关于x,y,z的表达式)则由F(x+z/y,y+z/x)=0由复合函数偏导法则αF/α
e^z-z+xy^3=0偏z/偏x:z'e^z-z'+y^3=0y^3=z'(1-e^z)z'=y^3/(1-e^z)偏z/偏y:z'e^z-z'+3xy^2=0z'=3xy^2/(1-e^z)偏z/
由连续偏导函数x=x(y,z)得∂x/∂y=-Fy/Fx同理:∂y/∂z=-Fz/Fy∂z/∂x=-Fx/Fz所以(∂
4zexp(-2z),z>0
f对第1个变量的偏导函数记作f1,第2个变量的偏导函数记作f2,dz=f1*d(xz)+f2*d(z/y)...[注:写完整的话是f1(xz,z/y),f2也如此]=f1*(xdz+zdx)+f2*(
用微分.再问:能不能用复合函数求导解下再答:用的就是复合函数求导方法。函数t=f(y/z,z/x)是由t=f(v,u)和v=y/z、u=z/x三个函数复合而成的。解答过程省略了:df(v,u)=0;f
对于任意的整数x和y,都符合F(xy)除以1997的余数与f(x)f(y)的乘积除以1997的余数相等
设:f1=偏f/偏(z/x),f2=偏f/偏(y/z),则由f(z/x,y/z)=0得:0=偏f/偏x=f1偏(z/x)/偏x+f2偏(y/z)/偏x=f1[-z/x²+(1/x)(偏z/偏
x=x(y,z),y=y(x,z),z=z(x,y)都是由方程F(x,y,z)=0所确定的具有连续偏导的函数(əx/əy)*(əy/əz)*(əz/&
若z=f(x,y)由方程F(x,y,z)=0确定,则将F(x,y,z)=0两边对x,y求导(x,y视为独立变量,z视为x,y的函数)这个是没有问题的,但此处x,y为两个独立的变量;题1.设y=f(x,
f=x+1f+u=2x+3f+u+c=3x+8f+u+c+k=4x+15f(f,u,c,k)=(x+1)(2x+3)(3x+8)(4x+15)
如果偏导数都等于零那么说明f(x,y,z)不是关于x,y,z的函数,或者说相对于x,y,z来说f(x,y,z)是一个常数.
你的问法是不是有问题啊,你想知道的可能是下面我说的.这个方法我给别人解答题目时用的,你可以看下.我是从平面的角度去解释至于曲面就有待研究了.他的题目是:求过直线2x-y-2z+1=0与x+y+4z-2