F.G为正方形ABCD的中点,正方形面积是100,求四边形EFCG的面积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:35:56
证明:∵正方形ABCD的边AB‖CD且AB=CDE,G分别边AB,CD的中点∴BE‖DG且BE=DG四边形BEDG是平行四边形BG‖DE同理AF‖CH四边形PQMN至少是平行四边形∵BG‖DE∴∠AE
(I)证明:由已知MA⊥平面ABCD,PD∥MA,所以PD⊥平面ABCD又BC⊂平面ABCD,因为四边形ABCD为正方形,所以PD⊥BC又PD∩DC=D,因此BC⊥平面PDC在△PBC中,因为G、F分
证明:因为:E,G,F分别是BM,PB,PC的中点所以:EG∥PM,且EG=(1/2)PM,GF∥BC,且GF=(1/2)BC由于:BC∥AD,BC=AD=DP所以:GF∥AD而:AD,PM都在平面A
BGEF在正方体的六个面上的射影有三种情况,即在前后面上的射影,在左右面上的射影,在上下面上的射影,这三种不同的情况下,只有在前后面上的射影正好占到一个面的一半,∴射影到面积的最大值是12故答案为:1
如右图所示:取BE中点H,连接HG、AH,∵HG∥EF∴∠AHG即为异面直线EF与AG所成角设正方形ABCD的边长为2,则在△AEH中,AE=1,EH=12,∴∠AEH=120°∴AH=12+(12)
不能回答,问题中有不明字母.
请参考如图,过中点F、G、H作正方形边的垂线易得 RF=PF=4 DE=4 PC=RD=2 BP=6∴BQ=PQ=3&nbs
连接DF、BE,∵正方形ABCD的边长为10厘米,∴S正方形ABCD=10×10=100cm2,∴S△BDC=12×10cm×10cm=50cm2,S△BEC=12S正方形ABCD=50cm2,又∵E
三角形AGE和三角形BGC相似,相似比为1:2(因为AE=1/2BC)所以S三角形AGE:S三角形BCG=1:4,BG=2EG所以S三角形ABG=2*S三角形AGEAD=2AE所以S三角形ADC=2*
3/16E是AD中点,即BC中点,边长为1,BC=根号2;CE=2分之根号2;F是CE中点,即CF=FE=4分之根号2;BF=4分之3根号2;G是BF中点,即BG=8分之3根号2;从G点向BD做垂线,
延长AG,交BC于H,因S△ABH=S△BCF=S△CDE=14×82=16(平方厘米),又因为AE=HC,E是AD中点,那么H是BC中点,所以BH:BC=1:2,则S△BGH:S△BCF=1:4,所
证明:(1)∵ABCD为正方形,∴AD=DC,∠ADC=90°,∠ADB=∠CDB=45°,又DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCG;(2)∵ABCD为正方形,∴AD∥BE,∴∠DAG
延长FG,交CD于点M,交AD延长线于点N;因为,在△BEF和△CEM中,∠EBF=90°=∠ECM,∠BEF=∠CEM,BE=CE,所以,△BEF≌△CEM,可得:BF=CM;因为,正方形ABCD中
解:设AB=BC=CD=2x(这样计算方便点,直接设x也可以)∵F是AD中点∴AF=x∵AD‖BC∴△AFG∽△BCG∴S△AFG:S△BCG=AF平方:BC平方∴S△BGC=4x平方,S△AFG=x
=(AE+BC)/2=6
找到取AD中点H,连接FH,∵PE:EC=PF:FD=1:1∴EF‖CD在正方形ABCD中H、G是对边中点HG//CD∴EF//HG所以EFHG在一个平面,又AH:HD=DF:FP=1:1则FH‖PD
∵四边形ABCD是正方形∴BC=DC∵AC为正方形ABCD的对角线∴∠DCF=∠BCF∵在△BCF和△DCF中,∴BC=DC,∠DCF=∠BCF,FC=FC∴△BCF全等于△DCF∴∠FBC=∠CDE
因为E是AB中点,则DE肯定是固定不变的,∠EDC也是固定不变的.如果结论是正确的,则∠GCD肯定也是固定不变的.那么,G点也是固定不变的.同理的,AF也是固定不变的,F应该是一个特殊的点.但是,在题