fffz^2dxdydz 其中是两个球

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:02:21
fffz^2dxdydz 其中是两个球
计算三重积分 ∫∫∫(x^2+y^2)dxdydz 其中D为曲面2z=x^2+y^2与z=2平面所围成的区域.

选用柱坐标系:0≤θ≤2Pi,0≤r≤2,r^2/2≤z≤2原式=∫dθ∫dr∫r^3dz=∫dθ∫r^3(2-r^2/2)dr=2Pi*(r^4/2-r^6/12)|r=2=16Pi/3再问:0≤r

关于高数三重积分∫∫∫dxdydz这样能不能计算出一个球心在原点半径为1的球的体积如果用截图法计算出来是∫-1 1∏(1

被积分函数1-z^2是个偶函数,积分域又是(-1,1)的对称域,所以积分必定不是零啊.∫-11∏(1-z^2)dz=2∫01∏(1-z^2)dz=4∏/3∫∫∫dxdydz可以用来计算体积,本来就是体

计算三重积分∫∫∫xy^2z^3dxdydz,其中积分面积是由z=xy,y=x,x=1,z=0所围成的闭区域,

题目中z=0表示的就是xoy平面,画个大概的立体图容易知道,此时所求的区域在Z正半轴,Z>0,当x=y且z=xy时,x=y=0,x=1是x的积分上限,若被积区域在x>1的范围,就不能构成封闭的积分区域

计算三重积分fffz^2dxdydz,其中 是由椭圆球x^2/a^2+y^2/b^2+z^2/c^2=1所围成的空间区域

可以用截面法解决空间区域可表示为{(x,y,z)|x^2/a^2+y^2/b^2再问:如图,就是这一步没有搞明白怎么来的。再答:截面是一个椭圆∫∫[D]dxdy是椭圆面积=πab(1-z^2/c^2)

计算三重积分∫∫∫2dxdydz,(Ω在∫∫∫下方),其中Ω为三个坐标及平面x+y+z=1所围

∫∫∫2dxdydz=2∫∫∫1dxdydz被积函数为1,积分结果为区域的体积,下面只需计算三个坐标面与x+y+z=1所围区域体积即可.体积为:(1/3)(1/2)*1*1*1=1/6因此本题结果是1

计算三重积分∫∫∫z方dxdydz,其中Ω由z=根号下x^2+y^2与z=1和z=2围成的空闭区

用柱坐标,积分区域:0≤r≤z,0≤t≤2π,1≤z≤2.∫∫∫z^2dxdydz=∫z^2dz∫dt∫rdr=∫z^2dz∫dt(z^2/2)=π∫z^4dz=π[z^5/5]=31π/5.

计算∫∫∫(x^2+y^2)dxdydz, 积分区域由曲面z=2-x^2 和z=x^2+2y^2所围成的闭区域,在线等

∵方程z=2-x²和z=x²+2y²,求得x²+y²=1∴所围成的闭区域在xoy平面上的投影是圆S:x²+y²=1故∫∫∫(x&#

计算三重积分∫∫∫xy^2z^3dxdydz,其中积分面积是由z=xy,y=x,x=1,z=0所围成的闭区域.

累次积分,投影到xoy面上,先对Z积分,积分限(0,xy),再对y积分(0,x),x积分(0,1)=1/28*13

∫∫∫z^2dxdydz,其中Ω是两个球:x^2+y^2+z^2≤R^2和x^2+y^2+z^2≤2Rz(R>0)的公共

很简单嘛,你想用哪个方法做?用切片法的话就先取横截面x²+y²+z²=R²和x²+y²+z²=2Rz的交点是R²=2Rz

高等数学计算三重积分计算三重积分下∫∫∫(D区域)(x^2+y^2)dxdydz,其中区域D由曲面z=[√(x^2+y^

首先围成的是下边是一个抛物面体上部是球的部分,让z1=z2,则交界处的交线方程是x^2+y^2=4,且对应的z=2,因为dv=r^2sinadado(a为r与z轴夹角,o为在xoy面内投影与x轴夹角)

计算三重积分 ∫∫∫(x^2+y^2)dxdydz 其中D为曲面2z=x^2+y^2与z=2平面所围成的区域中过程的疑问

注意圆柱体的方程是x^2+y^2=a^2的形式.而本题的方程是x^2+y^2=2z,是个抛物面,看清楚了.图形的底是抛物面z=(x^2+y^2)/2=ρ^2/2,不是0喔,不然的话真是变为圆柱体了而顶

计算三重积分 ∫∫∫(x^2+y^2+z)dxdydz 其中D为曲面z=1-x^2-y^2与xOy平面所围成的区域.

要注意重积分(二重,三重,……)不能将积分区域代入被积函数而线积分,面积分则可以将积分曲线、曲面的方程代入被积函数以上是性质,请时刻牢记你题目的详细计算过程请见下图(看不到的话请Hi我)

化三重积分i=∫∫∫f(x,y,z)dxdydz为三次积分,其曲面由z=x^2+2y^2及z=2-x^2所围成

先判断两个曲面的大小关系:z=x²+2y²为顶点在原点,开口向上的椭圆旋转抛物面z=2-x²为顶点在直线y=0上,开口向下的抛物面所以有==>x²+2y

带绝对值的三重积分∫∫∫ |z-x^2+y^2| dxdydz,(注意这里有绝对值)其中空间闭曲面由z=0,z=1及曲面

作柱面坐标变换,设x=rcosφ,y=rsinφ,z=z故∫∫∫|z-x^2+y^2|dxdydz=∫(0,2π)dφ∫(0,√2)rdr∫(0,1)|z-r|dz(符号∫(a,b)表示从a到b积分,

计算三重积分fffx^2+y^2+z^2dxdydz,其中 是由椭圆球x^2/a^2+y^2/b^2+z^2/c^2=1

利用书上那个例题:那里被积函数只有z^2,积分区域跟这个一样,看看那个方法就知道了.这个可以化成三个积分之和,被积函数分别是x^2,y^2,z^2,可以知道那个值应该是4pi*abc(a^2+b^2+