ffxy^2dxdy其中,D是由圆周x^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:47:12
T1<T2首先T1=∫∫(x+y)^2dxdyT2=∫∫(x+y)^3dxdy.这两个相除(x+y).你仔细想一下,如果(x+y)始终>=1,或者始终<=1,那么就好判断了.因此现在问题就看在D范围内
用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2
转化到极坐标系,则x²+y²=r²,x=rcosθ,y=rsinθ积分域D={(x,y)|x²+y²≤R²}={(r,θ)|0≤r≤R,0≤
我来回答吧:1),因为D是矩形区域,0
一楼在做完第一个积分时少了个2倍,二楼的结果是正确的.不过一楼的方法更好些,二楼的方法一般的工科学生不会用.
∫∫xy²dxdy=∫dθ∫(rcosθ)*(rsinθ)²*rdr(应用极坐标变换)=∫(cosθsin²θ)dθ∫r^4dr=∫sin²θd(sinθ)∫r
原式=∫<1,2>dx∫<1/x,x>(x/y²)dy=∫<1,2>x(x-1/x)dx=∫<1,2>(x²-1)dx=2³
直接用常规积分解比较繁琐,而且涉及到特殊形式积分,改为(r,θ)坐标,即∫∫4r^2drdθ,其中θ积分限为(0,2π),r为(0,1),这样积分得8/3πr^3|(0,1),结果为8/3π
先对x积分在对y积分∫∫e^(-y^2)dxdy=∫(0,1)[∫(0,y)e^(-y^2)dx]dy=∫(0,1)ye^(-y^2)dy=-1/2∫(0,1)e^(-y^2)d(-y^2)=-e(-
换元法x=rcosax^2+y^2≤1所以0
化为二次积分(先对y积分)∫∫[y/(1+x^2+y^2)^(3/2)]dxdy=∫(0→1)dx∫(0→1)y/(1+x^2+y^2)^(3/2)dy(对y积分的原函数是-1/√(1+x^2+y^2
令x=x^2,得到x=0和x=1,所以积分区域x是在0到1之间,而且在此区域里,x>x^2显然不能直接对(sinx/x)dx进行积分,所以先对dy进行积分∫∫(sinx/x)dxdy=∫(上限1,下限
设x=rcosty=rsint-π/2
原式=∫[1,2]dx∫[1/x,2]ye^(xy)dy=∫[1,2]dx∫[1/x,2]y/xe^(xy)d(xy)第一个对y的积分中x是常数=∫[1,2]1/xdx∫[1/x,2]yde^(xy)