F为AB中点ABC 等腰直角三角形ACD CBE 证明FDE 等腰直角三角形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:02:19
1、∵△ABC和△BDE是等腰直角三角形(AB=AC,BE=BD)∴∠ABC=∠DBE=45°∴∠DBC=∠DBE+∠ABC=90°∵F是CD中点∴BF=1/2CD=CF=DF∴∠BCF=∠CBF2、
∵PE垂直平分AB,∴PA=PB过P分别做PF⊥CB于F,PG⊥AC于G.四边形GPFC为正方形.∠GPF=90°△APG≌△BPF∠APG=∠BPF所以∠APB=90°所以△ABP为等腰直角三角形
∵E是AB的中点∴AE=BE=8∵F是AC边上的中点∴AF=CF=6∵△ABC为等腰三角形∴∠A=90°∵DE⊥DF∴∠FDE=90°∵AB=AC∴AF=AE∵D是BC的中点∴FD∥AB∴∠DFA=∠
不知道要求什么?我给你补充个结论吧.如图,△ABC为等腰直角三角形,AB=AC,D为斜边BC的中点,E,F分别为AB,AC边上的点,且DE⊥DF,若BE=12,CF=5,求EF的长.答案:连接AD.∵
证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵AB=AC,∴∠B=∠C,∵D是BC的中点,∴BD=CD,∴△BED≌△CFD(AAS),∴BE=CF,同理,在Rt△AED和Rt△AF
证明:因为AB=AC,角ABD=ACE,BD=CE所以有:三角形ABD全等于三角形ACE即有:AD=AE所以有三角形ADE是等腰三角形同时由于角BAC=90度,故有角ABF+FBC+ACB=90度又有
BD=DC,设BC=1,AB=1,角BDC=150,余弦定理可得BD=2-√3,角ABD=75,余弦定理,AD*2=AB*2+BD*2-2AB*BDcos75,得AD=1,再问:我才初一,这些是神马啊
连接AD因为CD=AD<C=<DAE(45°)<CDF=<ADE所以CDF全等于DAE所以AE=CF=6同理AF=8所以EF=10因为全等所以DF=DE即FED为等腰直角三角形面积为25【过程不太完整
如图,已知△ABC是等腰直角三角形,AB=AC,AD是斜边的中线,E、F分别是AB、AC边上的点,且DE⊥DF,若BE=8,CF=6.(1)求证:△AED≌△CFD;(2)求△DEF的面积.证明:(1
△DEF是以EF为底边的等腰直角三角形.[证法一]不失一般性,设点P在BD上.∵BC是等腰直角三角形ABC的底边,∴AB=AC,又BD=CD,∴AD⊥PD,而PE⊥AE,∴A、E、P、D共圆,∴∠PA
连结BM,则BM=MC,∠DBM=∠C=45º又BD=CE===>△BDM≌△CEM===>MD=ME∴△DEM是等腰直角三角形
1、∵△ABC和△BDE是等腰直角三角形(AB=AC,BE=BD)∴∠ABC=∠DBE=45°∴∠DBC=∠DBE+∠ABC=90°∵F是CD中点∴BF=1/2CD=CF=DF∴∠BCF=∠CBF2、
(1)∵∠EPF=45°,∴∠APE+∠FPC=180°-45°=135°;在等腰直角△ABC中,∠PCF=45°,则∠CFP+∠FPC=180°-45°=135°,∴∠APE=∠CFP.(2)①∵∠
如图,过点D作DG⊥AB于G,作DH⊥AC于H,∵△ABC为等腰直角三角形,D为斜边BC上的中点,∴DG=BG=DH=CH,∠GDH=90°,∴∠EDG+∠EFH=90°,∵DE⊥DF,∴∠FDH+∠
连接BD,∵∠ABC=90°,AB=CB∴∠A=∠C=45°.∵D为AC边上中点,∴∠4=12∠ABC=45°,BD=AD=CD=12AC.DB⊥AC,∴∠A=∠4.∠ADB=90°.∴∠1+∠2=9
是,因为EF为中位线,则EF=1/2AB=AD=BD又因三角形ABH为直角三角形,D为中点,所以DH=1/2AB=AD=DB所以可得DH=EF即为等腰梯形
证明:连接AD因为角BAC=角A=90度AB=AC所以三角形ABC的等腰直角三角形因为D为BC的中点所以AD是等腰直角三角形ABC的中线,垂线,角平分线所以AD=BD角ADB=角ADE+角BDE=90
证明:用角的计算来证明首先设角A,那么角B=90-A利用条件,得到角CDA=90-A/2角FED=A/2,角CEB=45+A/2从中可得角CEF=45度且EF垂直CD所以三角形CEF是等腰直角三角形.
连接DA根据题意,角ADC为直角.因为角EDF=90度,角ADC=90,即角EDF=角ADC两边同时减去角ADF得:角EDA=角FDC(1).D是BC中点,所以角BAD=角DAC=角ACB=45度(2