已知△ABC和△BDE都为等腰直角三角形,点E在AB上,点F为CD的中点,连接BF.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 00:45:28
已知△ABC和△BDE都为等腰直角三角形,点E在AB上,点F为CD的中点,连接BF.
1、∵△ABC和△BDE是等腰直角三角形(AB=AC,BE=BD)
∴∠ABC=∠DBE=45°
∴∠DBC=∠DBE+∠ABC=90°
∵F是CD中点
∴BF=1/2CD=CF=DF
∴∠BCF=∠CBF
2、∵BF=DF,EF=EF,DE=BD
∴△BEF≌△DEF(SSS)
∴∠DFE=∠BFE
延长EF,交AC于G
∵∠DFE=∠CFG
∴∠BFE=∠CFG
∵∠ABC=∠ACB,∠BCF=∠CBF
∴∠ABC-∠CBF=∠ACB-∠BCF,即∠ABF=∠ACF
∴∠EBF=∠GCF
∵BF=CF
∴△BEF≌△CGF(ASA)
∴EF=FG,BE=CG
∵AB-BE=AC-CG
∴AE=AG
∵AF=AF,EF=FG,AE=AG
∴△AEF≌△AGF(SSS)
∴∠AFG=∠AFE
∵∠AFE+∠AFG=180°
∴∠AFE=90°
即AF⊥EF
再问: 有图吗?
∴∠ABC=∠DBE=45°
∴∠DBC=∠DBE+∠ABC=90°
∵F是CD中点
∴BF=1/2CD=CF=DF
∴∠BCF=∠CBF
2、∵BF=DF,EF=EF,DE=BD
∴△BEF≌△DEF(SSS)
∴∠DFE=∠BFE
延长EF,交AC于G
∵∠DFE=∠CFG
∴∠BFE=∠CFG
∵∠ABC=∠ACB,∠BCF=∠CBF
∴∠ABC-∠CBF=∠ACB-∠BCF,即∠ABF=∠ACF
∴∠EBF=∠GCF
∵BF=CF
∴△BEF≌△CGF(ASA)
∴EF=FG,BE=CG
∵AB-BE=AC-CG
∴AE=AG
∵AF=AF,EF=FG,AE=AG
∴△AEF≌△AGF(SSS)
∴∠AFG=∠AFE
∵∠AFE+∠AFG=180°
∴∠AFE=90°
即AF⊥EF
再问: 有图吗?
如图,已知△ABC和△BDE都为等腰直角三角形,点E在AB上,点F为CD的中点,连接BF.
已知△ABC和△BDE都为等腰直角三角形,点E在AB上,点F为CD的中点,连接BF.
在等腰直角三角形abc中,点d是bc中点,de垂直ab,垂足为点e,过点b作bf平行ac交de的延长线于点f,连接cf
△abc为等腰直角三角形,ab=ac,d为斜边bc的中点,e、f分别为ab、ac上的点,且de⊥df.
一道相似证明题!如图,已知,△ABC和△BDE均为等腰直角三角形,且AB=AC,BE=DE,连接CD,取CD中点M,连接
已知,如图;在△ABC中,D为AB的中点,E为AC上的一点,DE延长线交BC延长线于点F,求证;BF
已知点D在AB上,△ABC 和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,且M为EC的中点
已知 如图,以AB为斜边的Rt△ABC和Rt△ABD中,点E是AB中点,连接DC,过点E作EF⊥CD,F为垂足.求证CF
如图,已知长方形ABCD中,点E.F分别在AB.BC上,△DEF为等腰直角三角形,∠DEF=90º.AD+CD
如图,在△ABC中,AB=AC,点E、F分别在AB和AC上,CE与BF相交于点D,若AE=CF,D为BF的中点,AE:A
如图,在等腰直角三角形ABC中,AB=1,∠A=90°,点E为腰AC的中点,点F在底边BC上,且FE⊥BE,求△CEF的
如图,已知△ABC,以AC为直径的⊙O交AB于点D,点E为弧AD的中点,连接CE交AB于点F,且BF=BC.