F是抛物线y^2=2x的焦点,AB是抛物线上的两点,AF BF=6

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:30:31
F是抛物线y^2=2x的焦点,AB是抛物线上的两点,AF BF=6
设F施抛物线G:x^2=4y的焦点

(1)如图可用判别式或导数求解法一:设切线L:y+4=kx{直线方程:点斜式} 联立y+4=kx与x^2=4y,消去y,x^2-4kx+16=0(1)由L与抛物线相切知:(1)有且仅有一实根

设F抛物线y^2=4x的焦点,过点F作直线交抛物线于MN两点,则三角形MON的面积最小值是

分析:高是不变的,为OF=1.使S△MON最小,既使MN最小.当MN垂直于X轴时,MN最小,MN=4.所以三角形MON的面积最小值是=1/2*1*4=2

已知抛物线C的方程y^2=4x,F为抛物线的焦点,顶点在原点上

y^2=4x,抛物线的焦点F(1,0)设圆心为(a,b),半径为r圆与x轴相切,那么r=|b|,圆与抛物线准线x=-1相切,则a+1=|b|又b^2=4a∴(a+1)^2=b^2=4a解得a=1,b=

已知抛物线y^2=4x,F是焦点,直线l是经过点F的任意直线

1.设M(x,y),直线L:x-1=ky(这样设就已经包括斜率不存在的情况了,但是不包括斜率为0的情况,但是这题斜率为0显然不用讨论,这里的k不是斜率,斜率是1/k)直线OM斜率为y/x∴(1/k)·

已知抛物线C:x^2=4y的焦点为F,点P为抛物线下方的一点,

(1):→P(1,-2)y`=x/2,设A(m,m²/4),B(n,n²/4)在A点切线斜率k1=m/2在B点切线斜率k2=n/2PA直线斜率:k1=(m²/4+2)/(

已知抛物线y^2=4x的焦点为F 准线为l

纯粹的体力活儿啊!首先,抛物线的方程可以写成(x2)^2=2p(y-b).且限制条件为p<1/2.由

已知抛物线y^2=4x的焦点为F,过焦点F的直线交于抛物线于A,B两点,且A在第一象限,

(1)F(1,0)AB过F点设直线AB:x=my+1设A(x1,y1),B(x2,y2)x=my+1代入y^2=4x得y^2-4my-4=0△AOB面积=1/2*OF*|y1-y2|=1/2*√[(y

急 设F是抛物线y^2=4x的焦点,A,B是抛物线上两点,若三角形AFB是正三角形,求其边长.

焦点(1,0)准线x=-1由抛物线定义得|AF|=Xa+1|BF|=Xb+1,|AB|=根号[(Xa-Xb)^2+(Ya-Yb)^2]由|AF|=|BF|=|AB|及抛物线方程推得Xa=Xb,Ya=-

1、已知F是抛物线y^2=4x的焦点,M、N为抛物线上的两点,且三角形MNF是正三角形,求三角的周长?

1.要使两条焦半径相等,所以MN与x轴垂直,设M(x,y),因为是等边三角形,所以FA=MA的根号三倍(A是MN与x轴的焦点),所以1-x=(根号3)*y,在根据抛物线方程,求出y=4-2(根号3),

求抛物线的焦点坐标已知抛物线y=x²+2x+3,其焦点坐标是

原式化为(x+1)²+2=y,相当于x²=y的图像向左平移1个单位,又向上平移2个单位,故焦点坐标为(-1,9\4)

已知点F是抛物线y^2=4x的焦点,点P在该抛物线上,且点P的横坐标是2,则|PF|=?

由于是抛物线,所以抛物线上一点到焦点的距离等遇到准线的距离|PF|就等于P点到准线的距离,准线x=-1,P点的恒坐标是2,所以|PF|为3再问:准线是怎么计算出来的,谢谢再答:圆锥曲线有第二定义,准线

已知P(4,-1),F为抛物线y^2=8x的焦点,M为抛物线上的点

过M作MN//x轴交准线x=-2于N则:MF=MN所以,MP+MF=MP+MN≥PN所以,P、M、N三点共线时,MP+MF值最小所以,M点纵坐标=P点纵坐标=-1M点横坐标=(-1)^2/8=1/8即

已知抛物线y^2=4x,焦点F

F(1,0)由于AB不可能平行y轴,可设AB:ky=x-1(x-1)^2=y^2k^2=4xk^2x^2-(2+4k^2)x+1=04=x1+x2=2+4k^2k=根号2/2x^2-4x+1=0|x1

抛物线Y=2x平方的焦点坐标是

x平方=y/22p=1/2p/2=1/8开口向上所以焦点是(0,1/8)

抛物线C:y^2=4x,F是C的焦点,过点F且斜率为1的直线l交抛物线于A、B两点

焦点F(1,0)AB的直线方程为y=x-1x²-6x+1=0x1+x2=6y1+y2=x1+x2-2=4线段AB的垂直平分线所在的直线方程y=-(x-3)+2=-x+52)AB的长度L=|x

已知抛物线y^2=4x的焦点为F 准线为l

哈哈,这种题估计只要大学读的非数学非物理专业的,哪怕高中数学再牛也答不出来了!

已知抛物线Y=1/2X,O为坐标原点;F为抛物线的焦点.求OF的值

Y=1/2X是一条直线.如果方程是Y^2=1/2X.那么F坐标(1/8,0)|OF|=1/8.

已知抛物线y平方=2px(p>0)的焦点为F 点是抛物线上横坐标为且位于x轴上方 点A到抛物线焦点距离为5 求抛物线方程

点A到焦点的距离等于到准线的距离,而y^2=2px准线方程为x=-1/2p;所以1/p+4=5;解之得p=2;抛物线方程为y^2=4x.

已知抛物线y^2=4x的焦点是F,点P是抛物线上的动点,定点A(2,1)

A在抛物线内部,从A向准线x=-1做垂线交抛物线于点P,则P即为所求.当y=1时,代人抛物线方程得到x=1/4,所以P(1/4,1)再问:为什么从A向准线x=-1做垂线交抛物线于点P时是最短的再答:因

F是抛物线y^2=1/4x^2的焦点,P是该抛物线上的动点,则线段PF中点的轨迹方程为?

抛物线是y^2=1/4x吧,则有F坐标是(1/16,0),设PF中点M的坐标是(x,y),则有P坐标是:(2x-1/16,2y)而P在抛物线上,则有(2y)^2=1/4(2x-1/16)即轨迹方程是y