点A是圆o上弧cf的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:35:14
首先,“如图”两字很多余其次,很明显,这是高中数学的典型问题(怀念~)最后,哥几乎是完全忘了,短期内解不出来(不好意思呵)另外再说一句,会这题的绝大多数这时候还在为学业努力奋斗,没有时间上网,所以你这
求证的结果应该是AF=CF吧?若是我猜的证明如下:延长CD交圆于点P则可知AB⊥CP且平分CP∴弧AP=弧AC∵C是弧AE的中点∴弧AC=弧CE∴弧CE=弧AP∴∠PCA=∠EAC(同弧所对的圆周角相
(1)延长CE交圆于M,则弧CD=弧CB=弧BM∴∠BCM=∠CBD∴CF=BF(2)连结OC交BD于N则△CFN≌△BFE∴BE=CN=3-1=2又OE=1∴CE=2√2∴BC=2√3
∵AB是直径,∴∠ECB+∠ECA=90°,∵CE⊥AB,∴∠A+∠ECA=90°,∴∠ECB=∠A,又∠A=∠D,∴∠D=∠ECA,∵C是弧BD的中点,∴弧CD=弧CB,∴∠CBD=∠D,∴∠ECB
1)连接AC,因为CE垂直于AB,所以角AEC=90度,所以角CAE+角ACE=90度.因为AB为直径,所以角ACE+角BCE=90度,所以角CAE=BCE.因为弧DC=弧BC,所以角CBD=CAB,
证明:连接AC,延长CD交圆O于M.CD垂直AB,则:弧AM=弧AC=弧CE,∠ACM=∠CAE;又AB为直径,∠ACB=90度.故:∠FCG=∠FGC(等角的余角相等)所以,CF=GF.
证明:连EB.∵AB是圆O的直径∴∠AEB=90°∴∠EGB+∠EBG=90°则对顶角∠CGF+∠EBG=90°--------(1)∵CD⊥AB∴∠C+∠CBD=90°---------(2)∵C是
在圆上取一点B',使弧B'N=弧BN,连接AB',交MN于P',连接PB'\x0d显然B,B'点关于MN对称,所以PB=PB'\x0d而在三角形APB'中,PA+PB'>AP'\x0d所以:PA+PB
作关A关于直径MN的对称点C,则PA=PC所以PA+PB=PC+PB由于两点之间线段最短,所以B、P、C共线时PA+PB达到最小值.
设点M(x,y),P(a,b),根据点M是线段PA的中点,得x=(a+2)/2,y=b/2∴a=2x-2,b=2y,∵点P(a,b)为圆O上一点∴代入x^2+y^2=1得:a^2+b^2=1将a=2x
以AO为直径,AO中点为圆心的圆.
1.弧CB=弧CD,CB=CD∠CAE=∠CAF,CF⊥AB于点F,∠CFA=90°,CE⊥AD的延长线于点E,∠CEA=90°,∠ACE=90°-∠CAE,∠ACF=90°-∠CAF∠ACE=∠AC
你这题没图啊,而且你是不是打错字啊.
A,B在圆心O上,D是弧AB的中点推得角aod=90°A,B在圆心O上,又d是ac的中点,推得ao=boad=bd所以ad‖bc推得角abc=角aod=90°即△abc为直角三角形
联结ABBC是半圆O的直径,点G是半圆上任意一点,点A为弧BC中点,AD垂直BC于点D交BG于点E,AC与BG交于点F∴∠DAC=RT∠-∠ACB∠AFB=RT∠-∠ABC=RT∠-∠ACB∴∠DAC
证明:连AC因为C是弧AE的中点所以弧AC=弧EC所以∠CAE=∠ABC因为AB是直径所以∠ACB=90,即∠ACD+∠BCD=90°因为CD⊥AB所以∠CDB=90°即∠ABC+∠BCD
已知如图AB是⊙O的直径点C、D为圆上两点,且弧CD=弧CD,CF⊥AV于点F已知如图AB是⊙O的直径点C、D为圆上两点,且弧CB=弧CD,CF⊥AB于点F,CE⊥AD的延长线于点E.1.试说明DE=