点p为三角形abc所在平面外一点,且角apb等于角bpc等于角cpa等于120
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:26:20
∵PA⊥PB,PC⊥PB∴PB⊥面PAC∴PB⊥AC又PP'⊥a,AC属于a∴PP'⊥AC∴AC⊥面PP'B∴AC⊥P'B同理BC⊥P'AAB⊥P'C∴P'为△ABC的垂心
作PD⊥AC于D,PE⊥BC于E,PO⊥平面ABC于O.连结PC,OD,OE,OC.则PC=24,PD==PE=6√10由三垂线定理可得OD⊥AC,OE⊥BC.易证△PDO≌△PEO,∴OD=OE,∴
在平面PAC中作AD垂直PC于D.根据已知平面PAC垂直平面PBC,故AD垂直面PBC,又BC在平面PBC内所以AD垂直BC,又PA垂直平面ABC,且BC在平面PBC内所以PA垂直BC,又PA与AD相
过A点,做AH垂直PC于点H因为平面PAC垂直于平面PBC,PC为两面交线AH垂直PC,AH在平面PAC内由两面垂直性质,得AH垂直于平面PBC所以AH垂直于BC又PA垂直于平面ABC,所以PA垂直于
选C如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,
因为两个平面只能交于一条直线所以可以设面ABC交面alfa=直线l如果直线AB交面alfa=点P,那么点P属于直线AB,所以点P属于面ABC,同时点P属于面alfa,由于点P是同时属于面ABC和面al
注意AC中点即为P的射影答案为5√3
(2008•大庆)如图,在△ABC中,AC=BC>AB,点P为△ABC所在平面内一点,且点P与△ABC的任意两个顶点构成△PAB,△PBC,△PAC均是等腰三角形,则满足上述条件的所有点P
证明:过点P作PQ⊥面ABC则Q点即为P点在面ABC上的射影∵PA=PB=PC∴根据三垂线定理得:AQ=BQ=CQ故Q是三角形ABC得中心∵∠BCA=90°∴Q点必为BC边的中点∵PQ∈面ABC∴根据
(1)P和A,B,C,后面是不是缺东西阿作PO垂直于BC连接AO因为PA=PB=PC所以BO=CO又因为角BAC为直角所以BA=OC所以PAO全等于POC所以角POA为90度PO垂直于OA所以PO垂直
只OP垂直面ABC不能证明面PAC垂直面ABC啊回答:\x0d过一条垂线上的任意面垂直那个面,面PBC是垂线上的一个面,就垂直那个面了,我用的反证法,有个定理给你说,三角形斜边的中点到三顶点的距离相等
过P作PO垂直平面ABC于O,则PA,PB,PC在平面ABC上的射影分别为OA,OB,OC,因为PA=PB=PC,所以OA=OB=OC(也可由直角三角形PAO,PBO,PCO全等得到),即O为三角形A
如图所示过AB中点R作RC并延长至Q点,使得QR=(1/2)CR,再连接AR、BR取CR中点为P.由于四边形APBQ的对角线互相平分,因此四边形APBQ为平行四边形又PQ=2PC,所以在以AB为公共底
可以过点P做PQ⊥平面ABC,交平面ABC于Q,连接BQ、CQ,取BC中点F,连接PF、FQ,因为PB=PC,所以可以证出△PBQ全等于△PCQ、FP垂直平分BC,所以BQ=CQ,F是BC中点所以FQ
设H1,H2,H3分别为PG1,PG2,PG3交于AB,BC,AC的点,则G1G2//H1H2,G2G3//H2H3.所以,G1G2//面ABC,G2G3//面ABC.又,G1G2与G2G3相交,故面
外心,外接圆圆心,证明方法做出立体图形PO大家都一样共用的,又PA=PB=PC,所以根据勾股定理另外三个直角边OA=OB=OC到三个顶点距离相等,根据定义:是外接圆圆心,即外心
(1)思路:欲证明PC⊥平面ABD,即证明PC⊥AD PC⊥BD 即可 在△ACP中,AC=AP AD 
6个我们老师讲过了再问:能不能给个过程啊?再答:分别作出三角形的三边的垂直平分线,三线交于同一点,这点就满足条件;A为圆心AB为半径画圆.以C为圆心CA为半径画圆.在AC左侧得一点.同理BC右侧一点.
1.中心此为正三角形2.垂心PA⊥BC,则OA⊥BC,OA是BC的高3.内心O到3边距离相等,O为内接圆圆心4.重心这个解释起来太麻烦了,你可以理解为O点是支撑起三角形的最佳力点,证明你还是回去问问老