点P为四边形ABCD内一点,PE⊥AB于点E,PF⊥BC于点F,[G垂直
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:24:51
为你提供精确解答、1、因为P点在平面ABCD内的射影为A所以PA垂直于面ABCD连结AC,BD,交点为O连结EO因为E,O分别为PD,BD中点所以EO平行且等于1/2PB又EO在面AEC内所以PB平行
设AH=a,AE方向的高=b,PF=xa,PG方向的高=yb.则有ab=3,abxy=5,ABCD的面积是(x+1)a(y+1)b所求面积=ABCD面积-BCD面积-AHPE面积-EPD面积-HPB面
连接PO平行四边形ABCD,对角线交点平分对角线,所以BO=DO,AO=CO所以,在Rt△DPB中,PO是斜边的中线,所以BD=2PO 在Rt△APC中,PO是斜边的中线,所以AC=2PO所以,A
作AB、AD、DC的垂直平分线,交点就是,因为垂直平分线上任上点到两个端点的距离相等.再问:请问什么是垂直平分线?再答:垂直平分线就是既垂直又平分原线段的直线
证明:连接OP在直角△APC中,OP是斜边中线∴OP=1/2AC在直角△BPD中,OP是斜边中线∴OP=1/2BD∴AC=BD四边形ABCD是平行四边形∴平行四边形ABCD是矩形
1、(1)扫过区域是个以a为半径,圆心角为90度的扇形,所以面积是πa^2/4.(2)由已知,P'B=PB=4,P'C=2,且∠PBP'=90,所以∠PP'B=45,PP'=4√2;又因为∠BP'C=
证明:∵四边形ABCD为矩形.∴AC=BD;AO=OC;BO=OD.又∵PA⊥PC.∴PO=AC/2.(直角三角形斜边的中线等斜边的一半)∴PO=BD/2.(等量代换)∴∠BPD=90°,即PB⊥PD
延长BC交CD于E然后作出∠B、∠C、∠E的角平分线,交点就是P原理:角平分线上两点到角两边的距离相等
∵正方形ABCD的面积为9,∴AB=3,∵△ABE是等边三角形,∴AB=BE=3,∵四边形ABCD是正方形,∴点B即为点D关于AC的对称点,∴BE即为PD+PE的最小值,∴PD+PE的最小值为:3
90-(135/2)=22.5
P从B运动到C,PB=x,则四边形APCD的面积y=4-x,0≤x≤2;(4)如果B沿A-B-C-D路线运动,运动路径x,则△PAD的面积y如下0<x≤2时,y=x;2<x≤4时,y=2;4<x≤6时
图在哪里?再问:级别不够传不了,你根据题意画一下吧再答:四边形规则吗?再问:规则再答:什么四边形?再问:长方形再答:设P点到BC的距离为a,到AD的距离为b,PD为x;根据勾股定理4²-a&
S四边形ABCD=3S四边形PFCG=5这类题可用假设.设GC=5,EP=3,两已知四边形的高均为1由题易得:S-ABCD=16S-PBD=(S-ABCD/2)-3-(3+5)/2=8-3-4=1
∵P点在平面ABCD内的射影为A∴PA⊥平面ABCD则PA⊥CD∵四边形ABCD为正方形∴CD⊥AD则CD⊥平面PAD∵CD∈平面PCD∴平面PCD⊥平面PAD则二面角C-PD-A为直角
∵ABCD是矩形∴∠ABC=∠DCB=90°AB=CD∵PB=PC∴∠PBC=∠PCB∴∠ABC-∠PBC=∠DCB-∠PCB即∠ABP=∠DCP∵AB=CD,PB=PC∴△ABP≌△DCP(SAS)
证明:设AC、BD交于点O,连接OP因为四边形ABCD是平行四边形所以OA=OC,OB=OD因为PA⊥PC,所以OP是直角三角形PAC斜边AC上的中线所以OP=OA=OC同理OP是直角三角形PBD斜边
延长DP到点P'使得AP=AP'连接BP′,AC∵APD=120°,∴∠APP'=60,AP=AP',∴△APP'是等边三角形.∴P'P=AP同理易见△ABC也是等边三角形,∵AB=BC,AP=AP'
受不了了,正方形ABCD的面积等于8.设正方形边长为a,将正方形放入以B点为原点的坐标中,并设p点的坐标为(x,y),可得以下方程组(一个数的平方我不会打,我就把x的平方表示为x*x)x*x+y*y=
ABCD是正方形吧?将三角形ABP绕点B顺时针旋转90度,可以得到一个等腰直角三角形,和一个直角三角形.