用SPSS做线性回归sig为多少可以
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 20:12:07
R2不到0.1,先不管偏回归系数的sig值了,找个好的理论指导,再选些其他重要的解释变量吧.再问:是数据处理的不对呢?还是这个模型本身有问题?多谢!
线性回归的r达到显著水平,说明回归是有效的.大多数自变量的回归系数不显著说明这些自变量的预测力度并不理想.可能是回归方法的问题,楼主用enter这种方法回归就会出现这种情况,改用stepwise或者是
这个没有是否错误这一说法,sig>0.05,只能说明你选的自变量对于因变量没有什么解释或预测作用.当然也可能是自变量之间仍然存在共线性的问题,这个时候可以采用因子分析来解决,当然前提是你的自变量和数据
很简单,用前进、后退或逐步法都行,一般用逐步法然后看整个模型是否有统计学意义,就是有回归和残差那项若有意义(P小于0.05)则继续看每个参数的P值若P值大于0.05,剔除~最后得方程模型当然还需要注意
要看每一个自变量的sig是否小于0.05,只要有一个不满足,则应选择STEPWISE方法,重新计算.
因为你不会spss操作,但是在那里乱在点我经常帮别人做这类的数据统计分析的再问:会不会是数据有问题造成的呢
要看sig值,那个就是P值,如果是小于0.001,一般情况下是显著的再问:不是说sig只要小于0.05就行么?再答:对的,看是在什么水平下,0.05也行再问:只要看sig么?其他值都不用看了?再答:是
原假设是“X1的系数为0”,sig值低于0.05就可以拒绝原假设啦再问:也就是说,原假设是x1的系数为0,而不是我自己设置的那个假设吧?我都晕了一下午了。。。如果是我自己设置的假设,那就互相矛盾了再答
sig要小于0.1是10%水平上显著sig=0说明在1%的水平上显著,比10%水平要求更高
你这个可以用sem来做普通ols做不了的另外,你要搞懂什么叫做多重回归,什么叫做多元回归,我经常做这类的数据统计分析
用福利的原始分数作为自变量进行分析是完全可以的.这个自变量的数据类型属于等距变量,即没有绝对零点但是有相等单位的数据.这种数据类型符合回归分析的数据要求.同时,如果觉得原始分数的代表性不是很强,也可以
结果里,R值就是回归的决定系数,代表各变量能解释因变量的程度.ANOVA里,sig小于0.05证明回归方程有效.constant对应的B值是截距(常数项),其他变量对应B值就是变量的影响系数.变量对应
可以做的,你操作可能有误我替别人做这类的数据分析很多的再问:改论文题目了
从你的回归分析系数的假设检验看出所以系数在0.05的检验水准下都没有统计学意义所以回归方程拟合的效果不好
造价是把?不建议造价,不是因为道德原因,而是造假太费功夫,很费时间,非专业人士不能做我经常帮别人做这类的数据分析的
说明变量没有意义哦,你可以选几个变量纳入进去分析试试再问:先做“要因分析”,然后以分析出的“要因1,2,3,4”为变量进行回归分析。结果,“要因1”sig为零,“要因2,3,4”sig值却都严重偏大!
这样好.系数为零的原假设很难成立.
在SPSS软件统计结果中,不管是回归分析还是其它分析,都会看到“SIG”,SIG=significance,意为“显著性”,后面的值就是统计出的P值,如果P值0.01
在LinearRegression对话框中,单击Method栏的下拉菜单,选择Stepwise;单击“Options”按钮,更改UseprobabilityofF栏中“Entry”的值为0.1,“Re
线性回归得出的结果是y与x的关系,而不是两个变量是否相关,相关问题要用相关分析.到数第二个表的sig是F检验的结果,