用向量法证明,空间四边形对角线互相垂直的充要条件是对边平方和相等
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 10:10:27
找到这两个向量所占平面的法向量,这两个向量都与法向量垂直,则这两个向量平行
向量BA+向量AD=向量BD向量AB+向量BC=向量AC因为向量AD=向量BC所以向量BD=向量AC则|BD|=|AC|
向量BD=2FG=2EF=2(EG-EF)BD//FG//EH且BD不在面EFGH内故BD平行面EFGH
连结AC向量EG=EH+HG根据中位线,可得向量HG=1/2AC向量EF=1/2AC即向量EF=HG向量EG=EH+EF四点共面
连结AC向量EG=EH+HG根据中位线,可得向量HG=1/2AC向量EF=1/2AC即向量EF=HG向量EG=EH+EF四点共面
向量AB+向量CB=2*向量EB向量AD+向量CD=2*向量FD向量FD=向量BF(因为F为BD中点)向量EB+向量FD=向量EB+向量BF=向量EF所以,向量AB+向量CB+向量AD+向量CD=2向
为方便,下面#后的代表向量.#CD=#BD-#BC,#AC=#BC-#BA,#AD=#BD-#BA.对角线的点积:#AC·#BD=(#BC-#BA)·#BD=#BC·#BD-#BA·#BD两组对边平方
设四边形为ABCD,对角线交点为O,则AB=OB-OACD=OD-OC因为OB=-ODOA=-OC所以AB=-CD就有一组对边平行同理可知另一组对边平行得证
因为是平行四边形,(以下字母均是向量)ab+bc=acbc+cd=bd因为|ac|=|bd|所以(ab+bc)^2=(bc+cd)^2ab^2+bc^2+2ab*bc=bc^2+cd^2+2bc*cd
设四顶点对应向量a,b,c,d.对角线垂直(a-c)*(b-d)=0(*表示点积)a*b+c*d=b*c+d*a(a-b)*(a-b)+(c-d)*(c-d)=(b-c)*(b-c)+(d-a)*(d
延长DO,则与BC交于B,连接C1、B,则平面DBC1就是平面DOB1,由于是长方体,AD1//BC1,所以AD1//平面DOB1,即平行于面DOB1
1)从题意可知OABC是空间正四边形,每个面都是正三角形.连接OE和AE,易知OE和AE都垂直于BC,因此BC垂直于平面OAE.从而DE垂直于BC.同样道理可得DE垂直于OA,因此DE是OA和BC的公
应证明对角线互相平分的四边形是平行四边形证明:如图,向量DC=向量OC-向量OD 向量AB=向量OB-向量OA=-向量OD+向量OC=向量DC 故AB∥DC且AB=DC,即ABCD
为方便,下面#后的代表向量.#CD=#BD-#BC,#AC=#BC-#BA,#AD=#BD-#BA.对角线的点积:#AC·#BD=(#BC-#BA)·#BD=#BC·#BD-#BA·#BD两组对边平方
如图,EP‖=BD/2‖=QF.EPFQ为平行四边形,EF,PQ共面.当然‖“与平面EPFQ平行”的任何平面,
楼上想法够搞笑的,是向量PA之类的PA还能分家啊?PO=PA+AO=PB+BO=PC+CO=PD+DO=PA1+A1O=PB1+B1O=PC1+C1O=PD1+D1OAO+C1O=BO+D1O=CO+
设平行四边形ABCD中,向量AB=向量a,向量BC=向量b则向量CD=向量-a,向量DA=向量-b则向量AC=向量a+b,向量BD=向量b-a向量AC²+向量BD²=向量a&sup
在四边形ABCD中,设AC,BD的交点为O,向量AB=向量a,向量AD=向量b因为O是AC中点所以向量AO=(1/2)*向量AC=(1/2)*(向量a+向量BC)即向量AO=(1/2)*(向量a+向量
设平行四边形相邻两边向量为a,b,则对角线向量为a+b,a-b.(1)若平行四边形是菱形,则|a|=|b|.则(a+b)(a-b)=a^2-b^2=0.即(a+b)与(a-b)垂直.(2)若对角线互相
因为ab+ad=2am,cb+cd=2cm所以ab+cb+ad+cd=2(am+cm)又因为在三角形ACM中,ma+mc=2ml所以am+cm=2lm所以ab+cb+ad+cd=4lm注意:以上的小写